
THE ARITHMETIC TRIANGLE

BLAISE PASCAL

1. INTRODUCTION

The treatises related to arithmetic triangle appear to be dated near the end of 1654, which
locates them near the same time as the exchange of letters with Fermat on the problem of
points. These were discovered after his death and publishedat Paris by Guillaume Desprez
in 1665 under the title:Traité du Triangle arithḿetique, avec quelques autres petits traités
sur la m̂eme matìere. These treatises includeDivers usages du triangle arithḿetique dont
le géńerateur ist l’unit́e. This last has four parts:

(1) Usage du triangle arithmétique pour les ordres numériques
(2) Usage du triangle arithmétique pour les combinations
(3) Usage du triangle arithmétique pour déterminaer les partis qu’on doit faire entre

deux jouers qui jouent en plusiers parties
(4) Usage du triangle arithmétique pour trouver les puissances des binômes et des

apotomes

Several other works are further associated with this treatise. These areTraité des Ordres
nuḿeriques, De numericis ordinibus Tractatus, De numerorum continuorum productis seu
de numeris qui producuntur ex multiplicatione numerorum serie naturali procedentium,
Numericarum potestatum generalis Resolutio, Combinationes, and two other which seem
to have been written later:De numeris multiplicibus ex sola characterum numericorum
additione agnoscendisandPotestatum numericarum summa.

A comparison of the text as presented in Volume III of the complete works of Pascal
printed by Hachette [1] to the same in the Pléide edition [2]shows some differences, gen-
erally of formatting, but sometimes of language. The translation below follows the latter.

With regard to the problem of points, one should refer toUsage du triangle arithḿetique
pour d́eterminaer les partis qu’on doit faire entre deux jouers quijouent en plusiers parties.
However, it is important to note that Pascal introduces the use of mathematical induction in
a very clear form. For this see the Twelfth Consequence inTraité du Triangle arithḿetique.

2. TREATISE ON THEARITHMETIC TRIANGLE

DEFINITIONS

I call Arithmetic Triangle, a figure for which the construction is such.
I draw from any point, G, Fig. 1, two perpendicular lines the one to the other, GV, Gζ,

from each of which I take as many as I wish of equal and contiguous parts, beginning with
G, that I name 1, 2, 3, 4, etc.; and these numbers arethe exponentsof the divisions of the
lines.

Date: Printed 1654, published 1665.
Translation into English by Richard Pulskamp, Department of Mathematics and Computer Science, Xavier

University, Cincinnati, Ohio. This document created January 31, 2009.
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FIGURE 1. The Arithmetic Triangle

Next I join the points of the first division which are in each ofthe two lines by another
line which forms a triangle of which it isthe base.

I join thus the two points of the second division by another line, which forms a second
triangle of which isthe base.

And joining thus all the points of division which have one same exponent, I form from
them as manytriangles and bases.

I draw, through each of the points of division, lines parallel to the sides, which by their
intersections form little squares, that I callcells.

And the cells which are between two parallels which go from left to right are called
cells of one same parallel rank, as the cells G,σ, π, etc., orφ, ψ, θ, etc.

And cells which are between two lines which go from top to bottom are calledcells of
one same perpendicular rank, as the cells G,φ, A, D, etc., and theseσ, ψ, B, etc.
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And those that one same base traverse diagonally are so-calledcells of one same base,
as those which follow, D, B,θ, λ, and these A,ψ, π.

The cells of one same base equally distant from their extremities are so-calledrecipro-
cals, as these, E, R and B,θ, because the exponent of the parallel rank of the one is the
same as the exponent of the perpendicular rank of the other, as it appears in this example,
where E is in the second perpendicular rank and in the fourth parallel, and its reciprocal R
is in the second parallel rank, and in the fourth perpendicular reciprocally; and it is quite
easy to demonstrate that those which have their exponents reciprocally equal are in one
same base and equally distant from their extremities.

It is also quite easy to demonstrate that the exponent of the perpendicular rank of any
cell that it be, added to the exponent of its parallel rank, surpasses by unity the exponent of
its base.

For example, the cell F is in the third perpendicular rank, and in the fourth parallel, and
in the sixth base, and these two exponents of ranks3 + 4 surpass by unity the exponent of
the base 6, that which comes from this that the two sides of thetriangle are divided into an
equal number of parts; but this is rather understood than demonstrated.

This remark is of similar nature, that each base contains onecell more than the preced-
ing, and each as many as its exponent of units; thus the secondφσ has two cells, the third
Aψπ has three of them, etc.

Now, the numbers which are set in each cell are found by this method:
The number of the first cell which is at right angle is arbitrary; but that one being placed,

all the others are forced; and for this reason it is called thegeneratorof the triangle; and
each of the others is specified by this single rule:

The number of each cell is equal to that of the cell which precedes it in its perpendicular
rank, plus that of the cell which precedes it in its parallel rank. Thus the cell F, that is, the
number of the cell F, equals the cell C, plus the cell E, and thus of the others.

Whence many consequences are drawn. Here are are the most important of them, where
I consider the triangles of which the generator is unity; butthat which will be said of them
will be proper to all the others.

FIRST CONSEQUENCE

In every arithmetic triangle, all the cells of the first parallel rank and of the first per-
pendicular rank are equal to the generator.

For by the construction of the Triangle, each cell is equal tothat which precedes it in
its perpendicular rank, plus to that which precedes it in itsparallel rank. Now, the cells of
the first parallel rank have no other cells which precede themin their perpendicular ranks,
nor cells of the first perpendicular rank in their parallel ranks: therefore they are all equal
among them and therefore to the first number generator.

Thusφ equals G+zero, that is,φ equals G.
Thus A equalsφ+zero, that is to say,φ.
Thusσ equals G+zero, andπ equalsσ+zero.
And thus of the others.

SECOND CONSEQUENCE

In every arithmetic triangle, each cell is equal to the sum ofall cells of the preceding
parallel rank, comprehended from its perpendicular rank tothe first inclusively.

Let ω be any cell: I say that it is equal to R+θ + ψ + φ, which are cells of the superior
parallel rank from the perpendicular rank ofω to the first perpendicular rank.

This is evident by the sole interpretation of the cells by those whence they are formed.
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For

ω equals R+ C
︸︷︷︸

.

θ + B
︸︷︷︸

ψ + A
︸︷︷︸

φ

for A andφ are equal among them by the preceding.
Thereforeω equals R+θ + ψ + φ.

THIRD CONSEQUENCE

In every arithmetic triangle, each cell equals the sum of allcells of the preceding per-
pendicular rank, comprehended from its parallel rank to thefirst inclusively.

Let C be any cell: I say that it is equal to B+ψ + σ, which are cells of the preceding
perpendicular rank, from the parallel rank of the cell C to the first parallel rank.

This appears similarly by the sole interpretation of the cells.
For

C equals B+ θ
︸︷︷︸

.

ψ + π
︸︷︷︸

σ,

Forπ equalsσ by the first.
Therefore C equals B+ψ + σ.

FOURTH CONSEQUENCE

In every arithmetic triangle, each cell diminished by unityis equal to the sum of all cells
which are comprehended between its parallel rank and its perpendicular rank exclusively.

Let ξ be any cell: I say thatξ−G equals R+θ + ψ + φ + λ + π + σ+G, which are all
the numbers comprehended between the rankξωCBA and the rankξSµ exclusively.

This is apparent similarly by interpretation.
For

ξ equalsλ+ R+ω
︸ ︷︷ ︸

π + θ + C
︸︷︷︸

σ + ψ + B
︸ ︷︷ ︸

G + φ+ A
︸︷︷︸

G.

Thereforeξ equalsλ+R+π + θ + σ + ψ+G+φ+G.

NOTE

I have said in the enunciation:each cell diminished by unity, because unity is the
generator; but if it were another number, it would be necessary to say:each cell diminished
by the generator number.
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FIFTH CONSEQUENCE

In every arithmetic Triangle, each cell is equal to its reciprocal.
For in the second baseφσ, it is evident that the two reciprocal cellsφ, σ, are equal to

one another and to G.
In the third A,ψ, π, it is clear likewise that the reciprocalsπ, A, are equal to one another

and to G.
In the fourth, it is clear that the extremes D,λ, are again equal to one another and to G.
And those from among two, B,θ, are clearly equals, since B equals A+ψ, andθ equals

ψ + π; nowπ + ψ are equal to A+ψ by that which is shown; therefore, etc.
Thus one will show in all the other bases that the reciprocalsare equal, because the

extremes are always equal to G, and that the others will be explained always by some
equal others in the preceding base which are reciprocals to one another.

SIXTH CONSEQUENCE

In every arithmetic triangle, a parallel rank and a perpendicular which have one same
exponent are composed of cells all equals the ones to the others.

Because they are composed of reciprocals.
Thus the second perpendicular rankσψBEMQ is entirely equal to the second parallel

rankφψθRSN.

SEVENTH CONSEQUENCE

In every arithmetic triangle, the sum of the cells of each base is double the cells of the
base preceding.

Let DBθλ be any base. I say that the sum of its cells is double of the sum of the cells of
the preceding Aψπ.

Because the extremes D,
︸︷︷︸

λ,
︸︷︷︸

equal the extremes A, π,
and each of the others B,

︸︷︷︸
θ,

︸︷︷︸

equal two of the other base A+ψ, ψ + π.

Therefore D+λ+B+θ equals 2A+2ψ + 2π.
The same thing is demonstrated similarly of all the others.

EIGHTH CONSEQUENCE

In every arithmetic triangle, the sum of the cells of each base is a number of the double
progression which begins with the unit of which the exponentis the same as that of the
base.

Because the first base is unity.
The second is double of the first, therefore it is 2.
The third is double of the second, therefore it is 4.
And thus to infinity.

NOTE

If the generator were not the unit, but another number, as 3, the same thing will be true:
but it would not be necessary to take the numbers of the doubleprogression starting with
the unit, namely: 1, 2, 4, 8, 16, etc., but those of another double progression starting with
the generator 3, namely, 3, 6, 12, 24, 48, etc.
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NINTH CONSEQUENCE

In every arithmetic triangle, each base diminished by unityis equal to the sum of all the
preceding.

Because it is a property of the double progression.

NOTE

If the generator were other than unity, it would be necessaryto say: each base dimin-
ished by the generator.

TENTH CONSEQUENCE

In every arithmetic Triangle, the sum of as many contiguous cells as one will wish from
its base, beginning with an extremity, is equal to as many cells of the preceding base, plus
again as many except one.

Let be taken the sum of as many cells as one will wish from the base Dλ, for example,
the first three, D+B+θ.

I say that it is equal to the sum of the first three of the preceding base A+ψ+ π, plus to
the first two of the same base A+ψ.

Because D,
︸︷︷︸

B.
︸︷︷︸

θ.
︸︷︷︸

equal A. A+ψ ψ + π.
Therefore D+B+θ equals 2A+2ψ + π.

DEFINITION

I call cells of the dividethose that the line which divides the right angle in half across
diagonally, as the cells G,ψ, C,ρ, etc.

ELEVENTH CONSEQUENCE

Each cell of the divide is double of that which precedes it in its parallel or perpendicular
rank.

Let C be a cell of the divide. I say that it is double ofθ, and also of B.
For C equalsθ+B, andθ equals B, by the fifth consequence.

NOTE

All these consequences are on the subject of the equalities which are encountered in
the arithmetic Triangle. We are going to see now the proportions, of which the following
proposition is the foundation.

TWELFTH CONSEQUENCE

In every arithmetic Triangle, two contiguous cells being inone same base, the superior
is to the inferior as the number of cells from the superior to the top of the base to the
number of cells from the inferior to the bottom inclusively.

Let E, C be any two contiguous cells of one same base: I say that:

E is to C as 2 to 3
inferior superior because there are because there are

two cells fromE three cells fromC

to the bottom: namely E, H to the top: namely C, R, µ.

Although this proposition has an infinite number of cases, I will give a quite short
demonstration, in supposing 2 lemmas.

The first, that it is evident by itself, that this proportion is encountered in the second
base; for it is quite clear thatφ is toσ as 1 to 1.

The second, that if this proportion is found in any base, it will be found necessarily in
the base following.
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Whence it is seen that it is necessarily in all the bases: for it is in the second base by the
first lemma; therefore by the second it is in the third base, therefore in the fourth, and to
infinity.

It is necessary therefore only to prove the second lemma, in this manner. If this propor-
tion is encountered in any one base, as in the fourth Dλ, that is, if D is to B as 1 to 3, and
B to θ as 2 to 2, andθ to λ as 3 to 1, etc.; I say that the same proportion will be found in
the following base, Hµ, and that, for example, E is to C as 2 to 3.

For D is to B as 1 to 3, by hypothesis.
Therefore D+ B

︸ ︷︷ ︸
is to B as 1 + 3

︸ ︷︷ ︸
to 3.

E to B as 4 to 3.
Similarly B is toθ as 2 to 2, by the hypothesis.
Therefore B+ θ

︸ ︷︷ ︸
to B, as 2 + 2

︸ ︷︷ ︸
to 2.

C to B, as 4 to 2.
But B to E, as 3 to 4.
Therefore, by the disturbed proportion, C is to E as 3 to 2.
That which it was necessary to demonstrate.
One will prove it similarly in all the rest, since this proof is based only on this that this

proportion is found in the preceding base, and that each cellis equal to its preceding, plus
to its superior, that which is true everywhere.

THIRTEENTH CONSEQUENCE

In every arithmetic Triangle, two contiguous cells being inthe same perpendicular rank,
the inferior is to the superior as the exponent of the base of this superior to the exponent
of its parallel rank.

Let F, C be any two cells in the same perpendicular rank. I say that

F is to C as 5 to 3
the inferior, the superior exponent of exponent of parallel

the base of C, rank of C.
Because E is to C as 2 to 3.
Therefore E+ C

︸ ︷︷ ︸
is to C as 2 + 3

︸ ︷︷ ︸
to 3.

F is to C as 5 to 3.

FOURTEENTH CONSEQUENCE

In every arithmetic Triangle, two contiguous cells being inthe same parallel rank, the
greatest is to its preceding as the exponent of the base of that preceding to the exponent of
its perpendicular rank.

Let F, E be two cells in one same parallel rank: I say that

F is to E as 5 to 2
the greatest, the preceding exponent of exponent of perpen-

the base of E, dicular rank of E.
Because E is to C as 2 to 3.

Therefore E+ C
︸ ︷︷ ︸

is to C as 2 + 3
︸ ︷︷ ︸

to 2.

F is to C as 5 to 2.

FIFTEENTH CONSEQUENCE

In every arithmetic Triangle, the sum of the cells of any parallel rank is to the last of
this rank as the exponent of the triangle is to the exponent ofthe rank.
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Let there be any triangle, for example the fourth GDλ: I say that any rank that we take
there, as the second parallel, the sum of its cells, namelyφ + ψ + θ, is toθ as 4 to 2. For
φ+ ψ + θ equals C, and C is toθ as 4 to 2, by the thirteenth consequence.

SIXTEENTH CONSEQUENCE

In every arithmetic Triangle, any parallel rank is to the inferior rank as the exponent of
the inferior rank to the number of its cells.

Let there be any triangle, for example the fifthµGH: I say that, whatever rank that we
take there, for example the third, the sum of its cells is to the sum of those of the fourth,
that is, A+B+C is to D+E as 4, exponent of the fourth rank, to 2 which is the exponent of
the number of its cells, for it contains 2 of them.

For A+B+C equals F, and D+E equals M.
Now F is to M as 4 to 2, by the twelfth consequence.

NOTE

On is able to state it also in this way:
Each parallel rank is to the inferior rank, as the exponent ofinferior rank to the index

of superior rank.
For the exponent of a triangle, less the exponent of one of itsranks, is always equal to

the number of the cells of the inferior rank.

SEVENTEENTH CONSEQUENCE

In every arithmetic Triangle, any cell that is added to all cells of its perpendicular rank,
is to the same cell added to all cells of its parallel rank, as the number of the cells taken in
each rank.

Let B be any cell; I say that B+ψ + σ is to B+A, as 3 to 2.
I say 3, because there are three cells added in the antecedent, and 2, because there are

two in the consequent.
For, B+ψ + σ equals C, by the thirteenth consequence; and B+A equals E, by the

second consequence.
Now C is to E as 3 to 2, by the twelfth consequence.

EIGHTEENTH CONSEQUENCE

In every arithmetic Triangle, two parallel ranks equally distant from the extremities, are
between them as the number of their cells.

Let GVζ be any triangle, and two of its ranks equally distant from theextremes, as the
sixth P+Q, and the secondφ+ψ+ θ+R+S+N: I say that the sum of the cells of one is to
the sum of the cells of the other, as the number of the cells of the one is to the number of
the cells of the other.

For, by the sixth consequence, the second parallel rankφψθRSN is the same as the
second perpendicular rankσψBEMQ, from which we have just proved this proportion.

NOTE

One is able to state also:
In every arithmetic Triangle, two parallel ranks, of which the exponents added together

exceed by unity the exponent of the triangle, are between them as their exponents recipro-
cally.

For this is only one same thing as that which has just been enunciated.
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LAST CONSEQUENCE

In every arithmetic Triangle, two contiguous cells being inthe divide, the inferior is
to the superior taken four times, as the exponent of the base of that superior to a number
greater by the unit.

Let ρ, C be two cells of the divide: I say thatρ is to 4C as 5, exponent of the base of C,
to 6.

Becauseρ is double ofω, and C ofθ; therefore 4θ equals 2C.
Therefore 4θ is to C as 2 to 1.
Now ρ is to 4C asω to θ, or by reason composed of ω to C

︸ ︷︷ ︸
+ C to 4θ

︸ ︷︷ ︸

by the preceding consequences 5 to 3 1 to 2
or 3 to 6

︸ ︷︷ ︸

5 to 6
Thereforeρ is to 4C as 5 to 6.
That which it was necessary to demonstrate.

NOTE

We are able to draw from there many other proportions that I suppress, because each
one is easily able to conclude them, and that those who will wish to have an interest in
them will find perhaps better than those that I am able to give.I end therefore with the
following problem, which makes the fulfillment of the treatise.

PROBLEM

Being given the exponents of the perpendicular and parallelranks of a cell, to find the
number of the cell, without using the arithmetic Triangle.

Let, for example, it be proposed to find the number of the cellξ of the fifth perpendicular
rank and the third parallel rank.

Having taken all the numbers which precede the exponent of the perpendicular 5, namely
1, 2, 3, 4, let there be taken as many natural numbers, starting with the exponent of the par-
allel 3, namely 3, 4, 5, 6.

Let the first ones be multiplied by one another, and let the product be 24. Let the others
be multiplied by one another, and let the product be 360, which, divided by the other
product 24, gives for quotient 15. This quotient is the number sought.

Forξ is the first of its base V by reason composed of all the ratios ofthe cells in-between,
that is to say,ξ is to V,
by reason composed of ξ to ρ

︸ ︷︷ ︸
+ ρ to K

︸ ︷︷ ︸
+ K to Q

︸ ︷︷ ︸
+ Q to V

︸ ︷︷ ︸

or by the twelfth consequence3 to 4 4 to 3 5 to 2 6 to 1
︸ ︷︷ ︸

Thereforeξ is to V as 3 by 4 by 5 by 6, to 4 by 3 by 2 by 1.
But V is unity; thereforeξ is the quotient of the division of the product of 3 by 4 by 5

by 6 by the product of 4 by 3 by 2 by 1.

NOTE

If the generator is not unity, it would be necessary to multiply the quotient by the gen-
erator.
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3. VARIOUS USAGES OF THE ARITHMETIC TRIANGLE OF WHICH THE
GENERATOR IS UNITY

After having given the proportions which are encountered among the cells and the ranks
of the arithmetic triangles, I pass to various usages of those of which the generator is unity;
this is that which we will see in the following treatises. ButI allow much more than I give;
it is a strange thing how it is fertile in properties! Each is able to be practiced; I caution
here only that, in all the following, I intend to speak only ofthe arithmetic Triangle of
which the generator is unity.

I
USAGE OF THE ARITHMETIC TRIANGLE

FOR THE NUMERIC ORDERS

We have considered in arithmetic the numbers of different progressions; we have also
considered those of different powers and of different degrees; but we have not, it seems to
me, examined enough those of which I speak, although they be of a very great usage: and
similarly they have no name; thus I have been obliged to give to them; and because those
of progression, of degree and of power are already employed,I myself serve with the one
of orders.

I call thereforenumbers of the first orderthe simple units:

1, 1, 1, 1, 1, etc.

I call numbers of the second orderthe naturals which are formed by addition of the
units:

1, 2, 3, 4, 5, etc.

I call numbers of the third orderthose which are formed by the addition of the naturals,
which are called triangular,

1, 3, 6, 10, etc.

That is, that the second of the triangular, namely 3, equals the sum of the first two
naturals, which are 1, 2; thus the third triangular 6 equals the sum of the first three naturals
1, 2, 3, etc.

I call numbers of the fourth orderthose which are formed by addition of the triangular,
which are calledpyramidal:

1, 4, 10, 20, etc.

I call numbers of the fifth orderthose which are formed by addition of the preceding, to
which we have not given expressed name, and which we could name triangular-triangular:

1, 5, 15, 35, etc.

I call numbers of the sixth orderthose which are formed by addition of the preceding:

1, 6, 21, 56, 126, 252, etc.
And thus to infinity, 1, 7, 28, 84, etc.

1, 8, 36, 120, etc.

Now, if we makes a table of all the orders of the numbers, wherewe mark to the side
the exponents of the orders, and above the roots, in this way:
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Roots
1 2 3 4 5 etc.

Units . . . . . . . . . Order 1 1 1 1 1 1 etc.
Naturals . . . . . . . . . Order 2 1 2 3 4 5 etc.
Triangular . . . . . . . . . Order 3 1 3 6 10 15 etc.
Pyramidal . . . . . . . . . Order 4 1 4 10 20 35 etc.

etc.

we will find this table similar to the arithmetic Triangle.
And the first order of numbers will be the same as the first parallel rank of the triangle.

The second order of numbers will be the same as the second parallel rank; and thus to
infinity.

For in the arithmetic Triangle, the first rank is all units, and the first order of the numbers
is similarly all units.

Thus in the arithmetic Triangle, each cell, as the cell F, equals C+B+A, that is, that
it equals its superior, plus all cells which precede this superior in its parallel rank; as it
has been proved in the 2nd consequence of the treatise on thistriangle. And the same
thing is found in each of the orders of the numbers. Because, for example, the third of the
pyramidals 10 equals the first three of the triangulars1 + 3 + 6, because it is formed by
their addition.

Whence it is seen manifestly that the parallel ranks of the triangle are nothing other than
the orders of the numbers, and that the exponents of the parallel ranks are the same as the
exponents of the orders, and that the exponents of the perpendicular ranks are the same as
the roots. And thus the number, for example, 21, which in the arithmetic Triangle is found
in the third parallel rank, and in the sixth perpendicular rank, being considered among the
numerical orders, will be of the third order, and the sixth ofits order, or of the sixth root.

This shows that all that which has been said of the ranks and ofthe cells of the arithmetic
Triangle agree exactly with the orders of the numbers, and that the same equalities and the
same proportions which have been noticed in the one, will be found also in the others;
it will be necessary only to change the statements, by substituting the terms which are
proper to the numerical orders, as those of root and of order,for those which are proper to
the arithmetic Triangle, as the parallel and perpendicularrank. I will give a small treatise
apart, where some examples which are stated there will make it easy to see all the others.

USAGE OF THE ARITHMETIC TRIANGLE
FOR COMBINATIONS

The wordCombinationhas been taken in many different senses, so that, in order to
remove the ambiguity, I am obliged to speak as I intend it.

When among many things we give the choice of a certain number,all the ways of taking
from them as many as is permitted among all those which are presented, are called here
thedifferent combinations.

For example, if from four things expressed by these four letters, A, B, C, D, we permit
to take from them, for example, any two, all the ways of takingfrom them two different in
the four which are proposed, are calledCombinations.

Thus we will find, by experience, that there are six differentways of choosing two in
four; we are able to take A and B, A and C or A and D, or B and C, or B and D, or C and
D.
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I do not count A and A as one of the ways of taking two; for these are not different
things; this is only a repetition.

Thus I do not count A and B and next B and A as two different ways;for we take in the
one and in the other manner only the same two things, but of a different order only; and
I take no notice at all of the order; so that I am able to explainmyself in a word to those
who are accustomed to consider the combinations, by saying simply that I speak only of
the combinations which are made without changing the order.

We will find likewise, by experience, that there are four waysto take three things in
four; because we are able to take ABC, or ABD, or ACD, or BCD.

Finally we will find that we are able to take four from four but in one way, namely,
ABCD.

I will speak therefore in these terms:

1 in 4 is combined 4 times.
2 in 4 is combined 6 times.
3 in 4 is combined 4 times.
4 in 4 is combined 1 time.

Or thus:

The number of combinations of 1 in 4 is 4.
The number of combinations of 2 in 4 is 6.
The number of combinations of 3 in 4 is 4.
The number of combinations of 4 in 4 is 1.

But the sum of all the combinations, in general, that we are able to make in 4, is 15,
because the number of combinations of 1 in 4, of 2 in 4, of 3 in 4,of 4 in 4, being added
altogether, make 15.

Next from this explication, I will give those consequences in the form of lemmas.

LEMMA I

A number does not combine at all in a smaller; for example, 4 isnot combined at all in
2.

LEMMA II

1 in 1 is combined1 time.
2 in 2 is combined1 time.
3 in 3 is combined1 time.

And generally any number is combined one time only in its equal.

LEMMA III

1 in 1 is combined1 time.
1 in 2 is combined2 times.
1 in 3 is combined3 times.

And generally the unit is combined in any number that it be as many times as it contains
unity.
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LEMMA IV

If there are any four numbers, the first such as we will wish, the second greater by unity,
the third such as we will wish, provided that it is not smallerthan the second, the fourth
greater by unity than the third: the number of combinations of the first in the third, added to
the number of combinations of the second in the third, equalsthe number of combinations
of the second in the fourth.

Let there be four numbers such as I have said:
The first such as we will wish, for example, 1.
The second greater by the unit, namely, 2.
The third such as we will wish, provided that it is not smallerthan the second, for

example, 3.
The fourth greater by the unit, namely 4.
I say that the number of combinations of 1 in 3, plus the numberof combinations of 2

in 3, equals the number of combinations of 2 in 4.
Let there be any three letters, B, C, D.
Let there be the same three letters, and one more A, B, C, D.
Take, according to the proposition, all the combinations ofone letter in the three, B, C,

D. There will be 3, namely B, C, D.
Take in the same three letters all the combinations of two; there will be 3, namely, BC,

BD, CD.
Take finally in the four letters A, B, C, D, all the combinations of 2; there will be 6,

namely, AB, AC, AD, BC, BD, CD.
It is necessary to demonstrate that the number of combinations of 1 in 3 and those of 2

in 3, equal those of 2 in 4.
This is easy, for the combinations of 2 in 4 are formed by the combinations of 1 in 3,

and by those of 2 in 3.
In order to see the technique, it is necessary to remark that among the combinations of

2 in 4, namely, AB, AC, AD, BC, BD, CD, there are of them where the letter A is used,
and the others where it is not.

Those where it is not used are BC, BD, CD, which consequently are formed of two of
the three letters B, C, D; therefore these are the combinations of 2 in these three, B, C,
D. Therefore the combinations of 2 in these three letters B, C, D, make a portion of the
combinations of 2 in those four letters A, B, C, D, since they form those where A is not
used.

Now if of the combinations of 2 in 4 where A is used, namely AB, AC, AD, one omits
the A, there will remain a single letter of these three B, C, D,namely B, C, D, which are
precisely the combinations of one letter in the three, B, C, D. Therefore if in the combi-
nations of one letter in the three, B, C, D, we add to each the letter A, and that thus we
have AB, AC, AD, we will form the combinations of 2 in 4, where Ais used; therefore the
combinations of 1 in 3 are a portion of the combinations of 2 in4.

Whence it is seen that the combinations of 2 in 4 are formed by the combinations of 2
in 3, and of 1 in 3; and hence that the number of combinations of2 in 4 equals that of 2 in
3, and of 1 in 3.

We will show the same thing in all the other examples, as:
The number of combinations of 29 in 40;
And the number of combinations of 30 in 40:
Equals the number of combinations of 30 in 41.
Thus the number of combinations of 15 in 55;
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And the number of combinations of 16 in 55:
Equals the number of combinations of 16 in 56.
And thus to infinity. That which it was necessary to demonstrate.

PROPOSITIONI

In every arithmetic Triangle, the sum of the cells of any parallel rank equals the number
of combinations of the exponent of the rank in the exponent ofthe triangle.

Let there be any triangle, for example the fourth GDλ. I say that the sum of the cells of
any parallel rank, for example the second,φ+ ψ + θ, equals the sum of the combinations
of this number 2, which is the exponent of this second rank, inthis number 4, which is the
exponent of this triangle:

Thus the sum of the cells of the 5th rank of the 8th triangle equals the sum of the
combinations of 5 in 8, etc.

The demonstration of it will be short, although there are an infinity of cases, by means
of these two lemmas.

The first, which is evident in itself, that in the first triangle this equality is found, be-
cause the sum of the cells of its unique rank, namely G, or unity, equals the sum of the
combinations of 1, exponent of the rank, in 1, exponent of thetriangle.

The second, that, if an arithmetic Triangle is found in whichthis proportion is encoun-
tered, that is, in which, whatever rank that one takes, it happens that the sum of the cells
are equal to the number of combinations of the exponent of therank in the exponent of the
triangle: I say that the following triangle will have the same property.

Whence it follows that all the arithmetic Triangles have this equality, for it is found in
the first triangle by the first lemma, and similarly it is againevident in the second; therefore
by the second lemma, the following will have it likewise, andhence the next again; and
also to infinity.

It is necessary therefore only to demonstrate the second lemma.
Let any triangle, for example, the third, in which we supposethat this equality is found,

that is, that the sum of the cells of first rank G+σ + π equals the number of combinations
of 1 in 3, and that the sum of the cells of the second rankφ + ψ equals the combinations
of 2 in 3; and that the sum of the cells of the third rank A equalsthe combinations of 3 in
3; I say that the fourth triangle will have the same equality,and that, for example, the sum
of the cells of the second rankφ+ ψ + θ equals the number of combinations of 2 in 4.

Becauseφ+ ψ + θ equals φ+ ψ
︸ ︷︷ ︸

+ θ
︸ ︷︷ ︸

+ G + σ + π
︸ ︷︷ ︸

By the hypothesis or the number of+ or the number of
combinations of 2 combinations of 1

in 3. in 3.
By the 4th lemma Or the number of combinations

of 2 in 4.
One will demonstrate likewise all the others.
That which it was necessary to demonstrate.
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PROPOSITIONII

The number of any cell that it be equals the number of combinations of a number less
by unity than the exponent of its parallel rank, in a number less by unity than the exponent
of its base.

Let there be any cell, F, in the fourth parallel rank and in thesixth base: I say that it
equals the number of combinations of 3 in 5, less by unity than4 and 6, for it equals the
cells A+B+C. Therefore by the preceding, etc.

PROBLEMI — PROPOSITIONIII

Two numbers being proposed, to find how many times the one is combined in the other
by the arithmetic Triangle.

Let the proposed numbers be 4, 6; it is necessary to find how much 4 is combined in 6.

First way.

Let the sum of the cells of the fourth rank of the sixth triangle be taken: it will satisfy the
question.

Second way.

Let the 5th cell of the 7th base be taken, because the numbers 5, 7 exceed by unity the
given 4, 6: its number is that which one demands.

CONCLUSION

By the relation that there is of the cells and ranks of the arithmetic Triangle to the com-
binations, it is easy to see that all that which has been proved of the ones agree with the
others according to their manner. It is this that I will provein a little treatise in a small
treatise that I have made on Combinations.

USAGE OF THE ARITHMETIC TRIANGLE
IN ORDER TO DETERMINE THE DIVISIONS WHICH WE MUST MAKE

BETWEEN TWO PLAYER WHO PLAY IN MANY GAMES

In order to understand the rules of the divisions, the first thing that it is necessary to
consider is that the money that the players have staked in thegame no longer belongs to
them, for they have given up the property; but they have received in exchange the right to
expect that which chance is able to give to them of it, according to the conditions to which
they have agreed first.

But, as this is a voluntary act, they are able to mutually interrupt it; and thus, in any term
that the game is found, they are able to quit it; and, to the contrary of that which they have
made on entering it, to renounce to the expectation of chance, and to return to each of them
the ownership of some thing. And in this case, the settlementof that which must belong
to them must be so proportioned to that which they had right toexpect from fortune, that
each of them finds entirely equal to take that which one assigns to him, or to continue the
adventure of the game: and this just distribution is calledthe division.

The first principle which shows in what way one must make the division, is this here:
If one of the players is found in such condition that, whatever happens, a certain sum

must belong to him in case of loss or of gain, without that chance is able to take it away
from him, he must not make any division of it, but take the whole as guaranteed, because
the division must be proportioned to chance, since there is no chance to lose, he must get
all without part.
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The second is this one here: if two players are found in such condition that, if the one
wins, a certain sum will belong to him, and if he loses, it willbelong to the other; if the
game is of pure chance, and if there is as much chance for the one as for the other and
consequently no more reason to win for the one than for the other, if they wish to separate
without playing, and to take that which belongs to them legitimately, the division is that
they separate the sum which is at risk in half, and that each takes his own.

FIRST COROLLARY

If two players play in a game of pure chance, with the condition that, if the first wins, a
certain sum will be restored to him, and if he loses, a lesser will be restored to him; if they
want to separate without playing, and each to take that whichbelongs to them, the division
is that the first take that which is restored to him in the case of loss, and moreover the half
of the excess by which that which would be restored to him in case of gain surpasses that
which is restored to him in the case of loss.

For example, if two players play with the condition that, if the first wins, he will obtain
8 pistoles, and if he loses, he will obtain 2 of them: I say thatthe division is that he take
these 2, plus the half of the excess of 8 over 2, that is, 3 more,because 8 surpasses 2 by 6,
of which the half is 3.

For, by hypothesis, if he wins, he obtains 8, that is,, 6+2, and if he loses, he obtains 2;
therefore these 2 belong to him in case of loss and of gain: andconsequently, by the first
principle, he must not make any division, but take them entire. But for the 6 others they
depend on chance; so that if it is favorable to him, he will winthem, otherwise, they will
be restored to the other; and by hypothesis, there is no more reason they be restored to the
one or to the other: therefore the division is that they separate them in half, and that each
take his own, which is what I have proposed.

Therefore, in order to say the same thing in other terms, the case of the loss belongs to
him, plus half of the difference of the cases of loss and of gain.

And, hence, if in case of loss, A belongs to him, and in case of gain A+B, the division
is that he takes A+ 1

2
B.

SECOND COROLLARY

If two players are in the same condition that we just said, I say that the division is able
to be made in this fashion, which returns to the same: that we collect the two sums of gain
and of loss and that the first take the half of this sum; that is,that we join 2 with 8 and it
will be 10, of which the half 5 will belong to the first.

Because the half of the sum of two numbers is always the same asthe lesser, plus the
half of their difference.

And this is demonstrated thus:
Let A be that which is restored in case of loss, and A+B that which is restored in case of

gain. I say that the division is made by collecting these two numbers, which are A+A+B,
and by giving the half to the first, which is1

2
A+ 1

2
A+ 1

2
B. Because this sum equals A+ 1

2
B,

which has been proven to make a just division.
These fundamentals being set down, we pass easily to determining the division of the

two players, who play for as many games as we will wish, in any state that they find
themselves, that is, what division it is necessary to make when they play in two games, and
when the first has one to nothing, or when they play in three, and when the first of them has
one to nothing, or when he has two to nothing or when he has two to one; and generally to
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any number of games that they play, and in whatever gain of games that there be, and the
one, and the other.

On which the first thing that it is necessary to remark, is thattwo players who play to
two games, of which the first of them has one to nothing, are in the same condition as
two others who play to three games, of which the first has two ofthem, and the other one:
for there is this in common that, in order to finish, the first lacks only one game and the
other two: and it is in this that the difference of the advantages consists, and what must
regulate the divisions; so that it is necessary properly to have regard only to the number of
games which remain for the one and for the other to win, and notto the number of those
which they have won, because, as we have already said, two players finding themselves in
the same state, when playing to two games, one of them has one to nothing, as two who
playing to twelve games, one of them has eleven to ten.

It is necessary therefore to propose the question in this way:
Being proposed two players, to each of which a certain numberof games are lacking in

order to end, to make the division.
I will give here the method, that I will pursue solely in two orthree examples which will

be so easy to continue, that it will not be necessary to give more of them.
In order to make the thing general without omitting anything, I will take for the first ex-

ample, that it is perhaps not appropriate to touch, because it is too clear; I do it nevertheless
in order to start at the beginning; it is this:

First case.

If to one of the players no game is lacking, and to the other some, the entire sum belongs
to the first. For he has won it, since none of the games is lacking in which he must win it.

Second case.

If to one of the players a point is lacking, and one to the other, the division is that they
divide the money in half, and that each take his own: this is evident by the second principle.
It is likewise if two games are lacking to the one and two to theother; and likewise any
number of games which are lacking to the one, if as many are lacking to the other.

Third case.

If to one of the players a game is lacking, and to the other two,here is the art to find the
division.

Consider that which would belong to the first player (to whom only one point is lacking)
in case of gain of the game which they are going to play, and next that which would belong
to him in case of loss.

It is clear that if the one to whom only one point is lacking, wins this game which is
going to be played, it will no longer be lacking to him: therefore all would belong to him
by the first case. But, on the contrary, if the one to whom two games are lacking wins that
which they are going to play, no more than one will be lacking to him; therefore they will
be in such condition, that one will be lacking to the one, and one to the other. Therefore
they must divide the money in half by the second case.

Therefore if the first wins that game which is going to be played, it all belongs to him,
and if he loses, the half belongs to him; therefore, in case that they wish to separate without
playing this game,3

4
belongs to him by the second corollary.
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And if we wishes to propose an example of the sum that they play, the thing will be well
more clear.

Let us put that this is 8 pistoles; therefore the first in case of gain, must have the whole,
which is 8 pistoles, and in case of loss, he must have the half which is 4; therefore there
belongs to him in case of division the half of8 + 4, that is, 6 pistoles of 8; for 8+4 makes
12, of which the half is 6.

Fourth case.

If to one of the players one game is lacking and three to the other, the division will be
found likewise by examining that which belongs to the first incase of gain and of loss.

If the first wins, he will have all his games, and therefore allthe money, which is, for
example, 8.

If the first loses, no more than 2 games will be necessary to theother to which 3 were
necessary. Therefore they will be in a state, that one game will be necessary to the first,
and two to the other; and hence, by the preceding case, 6 pistoles will belong to the first.

Therefore in case of gain, 8 is necessary to him, and in case ofloss 6; therefore, in case
of division, the half of these two sums belong to him, namely,7; because6 + 8 make 14,
of which the half is 7.

Fifth case.

If to one of the players one game is lacking and to the other four, the thing is likewise.
The first, in case of gain, wins all, which is, for example, 8; and in case of loss, one

game is lacking to the first and three to the other; therefore 7pistoles of 8 belong to him;
therefore in the case of division, the half of 8 belongs to him, plus the half of 7, that is, 71

2
.

Sixth case.

Thus, if one game is lacking to one and five to the other; and to infinity.

Seventh case.

Likewise, if two games are lacking to the first, and three to the other; for it is necessary
always to examine the case of gain and of loss.

If the first wins, one game will be lacking to him, and three to the other; therefore by
the fourth case 7 of 8 belong to him.

If the first loses, two games will be lacking to him, and to the other two, therefore by the
second case, the half belongs to each, which is four; therefore in case of gain, the first will
have 7 of them and in case of loss, he will have 4 of them; therefore in case of division, he
will have the half of these two together, namely, 51

2
.

By this method we will make the divisions under all sorts of conditions, by taking
always that which belongs in case of gain and that which belongs in case of loss, and
assigning for the case of division the half of these two sums.

Here is one of the ways to make divisions.
There are two others, the one by the arithmetic triangle, andthe other by combinations.
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METHOD FOR MAKING THE DIVISIONS BETWEEN TWO PLAYERS

WHO PLAY MANY GAMES BY MEANS OF THE ARITHMETIC TRIANGLE.

Before giving this method, it is necessary to make this lemma.

LEMMA

If two players play a game of pure chance, with condition that, if the first wins, some
portion of the sum that they wager will belong to him, expressed by a fraction, and that, if
he loses, a half portion of that same sum will belong to him, expressed by another fraction:
if they wish to separate themselves without playing, the condition of the division will be
found in this manner. Let the two fractions be reduced to the same denominator, if they are
not; let a fraction be taken of which the numerator is the sum of the two numerators, and
the denominator double of the preceding: this fraction expresses the portion which belongs
to the first of the sum which is in the game.

For example, let belong in case of gain3

5
of the sum which is in play, and let in the case

of loss,1
5

of it belong to him. I say that that which belongs to him in caseof division, will be
found by taking the sum of the numerators, which is 4, and the double of the denominator,
which is 10, from which one makes the fraction4

10.

For, by that which has been demonstrated in the second corollary, it was necessary to
collect the case of gain and of loss, and to take the half; now the sum of the two fractions
3

5
+ 1

5
is 4

5
, which is made by the addition of the numerators, and its halfis found by dou-

bling the denominator, and thus one has4

10
. That which it was necessary to demonstrate.

Now, the rules are general and without exception, whatever is restored in case of loss or
of gain; because if, for example, in case of gain,1

2
belongs, and in case of loss nothing, in

reducing the two fractions to the same denominator, we will have 1

2
for the case of gain,

and 0

2
for the case of loss; therefore, in case of division, it is necessary this fraction1

4
, of

which the numerator equals the sum of the others, and the denominator is the double of the
preceding.

Thus if in case of gain, all belongs, and in case of loss1

3
, by reducing the fractions

to like denomination, we will have3
3

for the case of gain, and1
3

for the one of the loss;
therefore in case of division,4

6
belongs.

Thus, if in case of gain all belongs and in case of loss nothing, the division will be
clearly 1

2
; for the case of gain is1

1
, and the case of loss0

1
; therefore the division is1

2
.

And thus of all the possible cases.

PROBLEM I — PROPOSITION I

Two players being proposed, to each of whom a certain number of games are lacking to
end, to find by the arithmetic Triangle the division that it isnecessary to make (if they wish
to separate themselves without playing), having regard to the games which are lacking to
each.

Let the base in the triangle be taken in which there are as manycells as games lacking
to the two together: next let be taken in this base as many contiguous cells starting with the
first, as games lacking to the first player, and let us take the sum of the numbers. Therefore
there remain as many cells as games lacking to the other. Let us take further the sum of the
numbers. These sums are the one to the other as the advantagesof the players reciprocally;
so that if the sum that they play is equal to the sum of the numbers of all the cells from the
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base, there will belong to each that which is contained in as many cells as games lacking
to the other; and if they play for another sum, it will belong to each of them in proportion.

For example, let there be two players, to the first of which twogames are lacking, and
to the other 4: it is necessary to find the division.

Let these two numbers 2 and 4 be added, and let their sum be 6; let the sixth base of the
arithmetic Triangle Pδ be taken, in which there are consequently six cells P, M, F,ω, S,δ.
Let as many cells be taken, starting at the first P, as games lacking to the first player, that
is, the first two P, M; therefore there remains as many games tothe other, that is, 4, F,ω, S,
δ.

I say that the advantage of the first is to the advantage of the second, as F+ω+S+δ to
P+M, that is that, if the sum which is played is equal to P+M+F+ω+S+δ, to the one to
whom two games are lacking belong the sum of the four cellsδ+S+ω+F and to the one
to whom 4 games are lacking, the sum of the two cells P+M. And if they play for another
sum, it belongs to them in proportion.

And in order to say it generally, any sum that they wager, there belongs to the first a
portion expressed by this fraction F+ω+S+δ

P+M+F+ω+S+δ
of which the numerator is the sum of

the 4 cells of the other, and the denominator is the sum of all the cells; and to the other a
portion expressed by this fraction, P+M

P+M+F+ω+S+δ
of which the numerator is the sum of the

two cells of the other, and the denominator the same sum of allthe cells.
And, if one game is lacking to the one, and five to the other, to the first belongs the sum

of the first five cells P+M+F+ω+S+δ, and to the other the sum of the cellδ.
And if six games are lacking to the one, and two to the other, the division will be found

in the eighth base, in which the first six cells contain that which belongs to the one to whom
two games are lacking, and the two others, that which belongsto the one to whom six of
them are lacking; and thus to infinity.

Although this proposition has an infinity of cases, I will demonstrate it nevertheless in
a few words by means of two lemmas.

The first, that the second base contains the divisions of the players to whom two games
are lacking in all.

The second, that if any base contains the divisions of those to whom as many games are
lacking as it has cells, the following base will be the same, that is it will contain also the
divisions of the players to whom as many games are lacking as it has cells.

Whence I conclude, in a word, that all the bases of the arithmetic Triangle have this
property: for the second has it by the first lemma; therefore,by the second lemma, the
third has it also, and consequently the fourth; and to infinity. That which it was necessary
to demonstrate.

It is necessary therefore only to demonstrate these 2 lemmas.
The first is evident of itself; because if one game is lacking to the one and one to the

other, it is evident that their conditions are asφ to σ, that is as 1 to 1, and that this fraction
belongs to each,

σ

φ+ σ
which is

1

2
.

The second will be demonstrated in this way.
If any base, as the fourth Dλ, contains the divisions of those to whom four games are

lacking, that is that, if one game is lacking to the first, and three to the second, the portion
which belongs to the first of the sum which is played, is that which is expressed by the
fraction D+B+θ

D+B+θ+λ
, which has for denominator the sum of the cells of this base, and for

numerator its first three; and that, if two games are lacking to the one, and two to the other,
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the fraction which belongs to the first is D+B
D+B+θ+λ

; and that, if three games are lacking to
the first, and one to the other, the fraction of the first is D

D+B+θ+λ
etc.

I say that the fifth base contains also the divisions of those to whom five games are
lacking; and that if two games, for example, are lacking to the first, and three to the other,
the portion which belongs to the first of the sum which is played, is expressed by this
fraction:

H + E + C
H + E + C + R + µ

For in order to know that which belongs to two players to each of whom some games
are lacking, it is necessary to take the fraction which wouldbelong to the first in case
of gain, and that which would belong to him in the case of loss,putting them with same
denominator, if they are not, and forming a fraction, of which the numerator is the sum of
the two others, and the denominator double of the other, by the preceding lemma.

Examine therefore the fractions which would belong to our first player in case of gain
or loss.

If the first, to whom two games are lacking, wins that which they are going to play, no
more than one game will be lacking to him, and to the other, always three; therefore four
games are lacking to them in all: therefore, by hypothesis, their division is found in the
fourth base, and to the first will belong this fractionD+B+θ

D+B+θ+λ
.

If on the contrary the first loses, two games will always be lacking to him, and two alone
to the other; therefore by hypothesis, the fraction of the first will be D+B

D+B+θ+λ
. Therefore,

in the case of division, to the first will belong this fraction

D + B + θ + D + B,
2D + 2B + 2θ + 2λ,

that is,
that is,

H + E + C
H + E + C + R + µ

.

That which it was necessary to demonstrate.
Thus this is demonstrated among all the other bases without any difference, because

the foundation of this proof is that a base is always double ofits preceding by the seventh
consequence, and that, by the tenth consequence, as many cells as one will wish of one
same base are equal to as many of the base preceding (which is always the denominator
of the fraction in case of gain) plus again in the same cells, one excepted (which is the
numerator of the fraction in case of loss); that which being true generally everywhere, the
demonstration will be always without obstacle and universal.

PROBLEM II — PROPOSITION II

Having proposed two players who stake each one same sum with acertain number of
games proposed, to find in the arithmetic Triangle the value of the last game out of the
money of the loser.

For example, let two players each wager three pistoles in four games: one demands the
value of the last game out of the three pistoles of the loser.

Let the fraction be taken, which has unity for numerator, andfor denominator the sum
of the cells of the fourth base, since we play to four games: I say that this fraction is the
value of the last game out of the stake of the loser.

For if two players playing to four games, one of them has threeto nothing, and that thus
one is lacking to the first, and four to the other, it has been demonstrated that that which
belongs to the first for the gain that he has made for his first three games, is expressed by
this fraction H+E+C+R

H+E+C+R+µ
which has for denominator the sum of the cells of the fifth base,

and for numerator its first four cells; therefore, there remains out of the total sum of the two



22 BLAISE PASCAL

stakes only this fraction µ
H+E+C+R+µ

, which will be acquired by the one who has already
the first three games in case that he won the last; of which the value of this last out of the
sum of the two stakes is

µ

H + E + C + R + µ

that is,
that is,

unity
2D + 2B + 2θ + 2λ

.

Now, since the total sum of the stakes is 2D+2B+2θ + 2λ, the sum of each stake is
D+B+θ + λ; therefore the value of the last game out of the sole stake of the loser is
this fraction 1

D+B+θ+λ
, double of the preceding, and which has for numerator unity, and

for denominator the sum of the cells of the fourth base. That which was necessary to
demonstrate.

PROBLEM III — PROPOSITION III

Two players being proposed who each stake one same sum in a certain number of given
games, to find in the arithmetic Triangle the value of the firstgame out of the stake of the
loser.

For example, let two players each stake 3 pistoles on four games, one demands the value
of the first out of the stake of the loser.

Let be added to the number 4 the number 3, less by unity, and letthe sum be 7; let
the fraction be taken which has for denominator all the cellsof the seventh base, and for
numerator the cell of this base which is encountered in the divide, namely, this fraction

ρ

V + Q + K + ρ+ ξ + N + ζ
,

I say that it satisfies the problem.
For if two players playing to four games, the first has one to nothing, there will remain

three to win to the first, and four to the other; therefore there belongs to the first out of the
sum of the two stakes this fraction V+Q+K+ρ

V+Q+K+ρ+ξ+N+ζ
, which has for denominator all the

cells of the seventh base, and for numerator its first four cells.
ThereforeV+Q+K+ρ out of the sum total of the two stakes belongs to him, expressed

by V+Q+K+ρ + ξ+N+ζ; but this last sum being the collection of two stakes, the half
was set into the game, namely V+Q+K+ 1

2
ρ (because V+Q+K is equal toζ+N+ξ).

Therefore this is1

2
ρ, that is,ω, no more that he had in entering the game; therefore

he has won out of the total sum of the two stakes a portion expressed by this fraction
ω

V+Q+K+ρ+ξ+N+ζ
, therefore he has won out of the stake of the loser a portion which will

be double of this here, namely, that which is expressed by this fraction:
ρ

V + Q + K + ρ+ ξ + N + ζ
.

Therefore the gain of the first game has acquired this fraction to him; therefore its value
is such.

COROLLARY

Therefore the value of the first game of two out of the stake of the loser, is expressed by
this fraction 1

2
.

For in taking this value according to the rule which comes from being given it, it is
necessary to take the fraction that has for denominator the cells of the third base (because
the number of the games on which we play is two, and the number less by unity is 1, which
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with 2 makes 3), and for numerator the cell of this base which is in the divide; therefore
one will have this fraction ψ

A+ψ+π
.

Now the number of the cellψ is 2, and the numbers of the cells A+ψ+π, are1+2+1.
Therefore we have this fraction 2

1+2+1
, that is,2

4
that is, 1

2
.

Therefore the gain of the first game has acquired to him this fraction; therefore its value
is such. That which it was necessary to demonstrate.

PROBLEM IV — PROPOSITION IV

Two players being proposed who each stake one same sum on a certain number of given
games, to find by the arithmetic Triangle the value of the second game on the stake of the
loser.

Let the given number of games on which we play be given, 4; it isnecessary to find the
value of the second game on the stake of the loser.

Let the value be taken of the first game by the preceding problem. I say that it is the
value of the second.

For two players playing in 4 games, if one of them has two to none, the fraction which
belongs to him is this,

P+ M + F + ω

P+ M + F + ω + S+ δ
,

which has for denominator the sum of the cells of the sixth base, and for numerator the
sum of the first four; but there was set into the game this fraction:

P+ M + F + ω

P+ M + F + ω + S+ δ

namely, the half of all. Therefore there remains to him of gain this fraction: P+M+F+ω
P+M+F+ω+S+δ

,

which is the same thing as this:
ρ

V + Q + K + ρ+ ξ + N + ζ
;

therefore he has won out of the half of the entire sum, that is,out of the stake of the loser,
this fraction:

2ρ

V + Q + K + ρ+ ξ + N + ζ
,

double the preceding.
Therefore the gain of the first two games had acquired to him this fraction out of the

money of the loser, which is the double of that which the first game had acquired to him
by the previous; therefore the second game has as much acquired to him as the first.

CONCLUSION

One is able to conclude easily, by the relationship that there is of the arithmetic Triangle
to the divisions which must be made between two players, thatthe proportions of the cells
which have been given in theTreatise of the Triangle, has some consequences which are
extended to the value of the divisions, which are very easy todraw, and of which I have
made a small discourse, in treating some divisions, which give the intelligence and the
means to extend them further.
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USAGE OF THE ARITHMETIC TRIANGLE
TO FIND THE POWERS OF BINOMIALS AND OF APOTOMES

If it is proposed to find any power, as the fourth degree of a binomial, of which the
first term is A, the other unity, that is that it is necessary tofind the square-square of A+1,
it is necessary to take in the arithmetic Triangle the fifth base, namely that of which the
exponent 5 is greater by unity than 4, exponent of the order proposed. The cells of this fifth
base are 1, 4, 6, 4, 1, of which it is necessary to take the first number 1 for coefficient of
A in the degree proposed, that is, of A4; next it is necessary to take the second number of
the base, which is 4, for coefficient of A at the degree next inferior, that is of A3, and take
the next number of the base, namely 6, as coefficient of A at thedegree inferior, namely
A2, and the next number of the base, namely 4, as coefficient of A at the degree inferior,
namely root A, and to take the last number of the base 1 for absolute number: and thus we
will have 1A4+4A3+6A2+4A+1 which will be the square-square power of the binomial
A+1. So that if A (which represents all numbers) is unity, and that thus the binomial A+1

is the binary, this power

1A4 + 4A3 + 6A2 + 4A + 1

will be now

1.14 + 4.13 + 6.12 + 4.1 + 1;

that is one time the square-square of the unit A, that is, 1
Four times the cube of 1, that is, 4
Six times the square of 1, that is, 6
Four times unity, that is, 4
Plus unity 1
Which added make 16

And indeed the square-square of2 is 16.
If A is another number, as 4, and therefore that the binomial A+1 is 5, then its square-

square will be always, according to this method, 1A4+4A3+6A2+4A+1, which signifies
now:

1.44 + 4.43 + 6.42 + 4.4 + 1;

that is one time the square-square of 4, namely 256
Four times the cube of 4, namely 256
Six times the square of 4 96
Four times the root 4, 4
Plus unity 1
of which the sum 625

makes the square-square of 5: and indeed the square-square of 5 is 625. And thus some
other examples.

If one wishes to find the same degree of the binomial A+2, it is necessary to take of the
same

1A4 + 4A3 + 6A2 + 4A + 1

and next write these four numbers 2, 4, 8, 16, which are the first four degrees of 2, under
the numbers 4, 6, 4, 1; that is, under each of the numbers of thebase, in leaving the first in
this manner:

1A4 + 4
2
A3 + 6

4
A2 + 4

8
A + 1

16

and multiply the numbers which correspond by one another so that:
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1A4+ 4A3+ 6A2+ 4A1+ 1
2 4 8 16

1A4+ 8A3+ 24A2+ 32A1+16
And thus we will have the square-square of the binomial A+2; so that if A is unity, this
square-square will be such:

One times the square-square of the unit A 1
Eight times the cube of unity 8
24,12 24
32, 1 32
Plus the square-square of 2 16
of which the sum 81

will be the square-square of 3: and indeed 81 is the square-square of 3.
And if A is 2, then A+2 will be 4, and its square-square will be:

One times the square-square of A or of 2, namely 16
8, 23 64
24,22 96
32, 2 64
Plus the square-square of 2 16
of which the sum 256

will be the square-square of 4.
In the same manner we will find the square-square of A+3, in setting out in the same

way:
A4+ 4A3+ 6A2+ 4A+ 1

and below the numbers 3 9 27 81
1A4+ 12A3+ 54A2+ 108A+ 81

which are the first four degrees of 3; and multiplying the corresponding numbers, we will
find that the square-square ofA+ 3.

And thus to infinity. If instead of square-square we wish to find the square-cube, or the
fifth degree, it is necessary to take the sixth base, and to useas I have said of the fifth; and
thus of all the other degrees.

We will find likewise the powers of the apotomes A−1, A−2, etc. The method is
entirely similar, and differs only in the signs, because thesigns of+ and of− always
follow themselves alternately, and the sign of+ is always the first.

Thus the square-square of A−1 will be found in this way. The square-square of A+1

is by the preceding rule1A4 + 4A3 + 6A2 + 4A+1. Therefore in changing the signs as I
have said, one will have1A4

− 4A3 + 6A2
− 4A+1. Thus the cube of A−2 will be found

similarly. For the cube of A+2, by the preceding rule, is A3 + 6A2 + 12A+8. Therefore
the cube of A−2 will be found by changing the signs

A3
− 6AA2 + 12A − 8.

And thus to infinity.
I have not given the demonstration of all this, because of others who have treated it

already, as Hérigone, besides that the thing is evident in itself.
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