THE ARITHMETIC TRIANGLE

BLAISE PASCAL

1. INTRODUCTION

The treatises related to arithmetic triangle appear to tedldeear the end of 1654, which
locates them near the same time as the exchange of lettér&aritnat on the problem of
points. These were discovered after his death and publatieakis by Guillaume Desprez
in 1665 under the titleTraité du Triangle arithmgtique, avec quelques autres petits #ait
sur la réme matire. These treatises includ@ivers usages du triangle arithtique dont
le gérérateur ist 'uni€é. This last has four parts:

(1) Usage du triangle arithmétique pour les ordres nuioes

(2) Usage du triangle arithmétique pour les combinations

(3) Usage du triangle arithmétique pour déterminaer Etigpqu’on doit faire entre
deux jouers qui jouent en plusiers parties

(4) Usage du triangle arithmétique pour trouver les pumissa des bindmes et des
apotomes

Several other works are further associated with this geafihese aréraité des Ordres
nuneriques De numericis ordinibus Tractatu®e numerorum continuorum productis seu
de numeris qui producuntur ex multiplicatione numerorumesaaturali procedentium
Numericarum potestatum generalis ResoluBombinationesand two other which seem
to have been written lateiDe numeris multiplicibus ex sola characterum numericorum
additione agnoscendandPotestatum numericarum summa

A comparison of the text as presented in Volume Il of the clatgworks of Pascal
printed by Hachette [1] to the same in the Pléide editiorsfgjws some differences, gen-
erally of formatting, but sometimes of language. The tratish below follows the latter.

With regard to the problem of points, one should refddsage du triangle arithi@tique
pour ceterminaer les partis qu’on doit faire entre deux jouersjguient en plusiers parties
However, it is important to note that Pascal introduces #eeaf mathematical induction in
avery clear form. For this see the Twelfth Consequendediié du Triangle arithrétique

2. TREATISE ON THEARITHMETIC TRIANGLE

DEFINITIONS

| call Arithmetic Triangle a figure for which the construction is such.

I draw from any point, G, Fig. 1, two perpendicular lines tme do the other, GV, G
from each of which | take as many as | wish of equal and contigyarts, beginning with
G, that | name 1, 2, 3, 4, etc.; and these numbersterexponentsf the divisions of the
lines.

Date Printed 1654, published 1665.
Translation into English by Richard Pulskamp, Departmériflathematics and Computer Science, Xavier
University, Cincinnati, Ohio. This document created Jap&4, 2009.
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FIGURE 1. The Arithmetic Triangle

Next | join the points of the first division which are in eachtbé two lines by another
line which forms a triangle of which it ithe base

I join thus the two points of the second division by anothee Jiwhich forms a second
triangle of which ishe base

And joining thus all the points of division which have one saexponent, | form from
them as manyriangles and bases

I draw, through each of the points of division, lines paialethe sides, which by their
intersections form little squares, that | cedllls

And the cells which are between two parallels which go frofhtle right are called
cells of one same parallel ranks the cells Gg, 7, etc., org, ¥, 6, etc.

And cells which are between two lines which go from top to dttare callectells of
one same perpendicular ran&s the cells Gg, A, D, etc., and these, 1, B, etc.
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And those that one same base traverse diagonally are satcalls of one same base
as those which follow, D, B}, A, and these Ay, .

The cells of one same base equally distant from their extiesrire so-callececipro-
cals as these, E, R and B, because the exponent of the parallel rank of the one is the
same as the exponent of the perpendicular rank of the othdrappears in this example,
where E is in the second perpendicular rank and in the fowatallel, and its reciprocal R
is in the second parallel rank, and in the fourth perpendiadciprocally; and it is quite
easy to demonstrate that those which have their exponesifgaeally equal are in one
same base and equally distant from their extremities.

It is also quite easy to demonstrate that the exponent of éhgepdicular rank of any
cell that it be, added to the exponent of its parallel rankpasises by unity the exponent of
its base.

For example, the cell F is in the third perpendicular rankl iarthe fourth parallel, and
in the sixth base, and these two exponents of rankst surpass by unity the exponent of
the base 6, that which comes from this that the two sides dfidmgle are divided into an
equal number of parts; but this is rather understood tharodstrated.

This remark is of similar nature, that each base containsehenore than the preced-
ing, and each as many as its exponent of units; thus the seeohds two cells, the third
Ay has three of them, etc.

Now, the numbers which are set in each cell are found by ththode

The number of the first cell which is at right angle is arbigrdmut that one being placed,
all the others are forced; and for this reason it is calledgém@eratorof the triangle; and
each of the others is specified by this single rule:

The number of each cell is equal to that of the cell which pileseét in its perpendicular
rank, plus that of the cell which precedes it in its paradgik. Thus the cell F, that is, the
number of the cell F, equals the cell C, plus the cell E, and tfihe others.

Whence many consequences are drawn. Here are are the mosanipf them, where
| consider the triangles of which the generator is unity;that which will be said of them
will be proper to all the others.

FIRST CONSEQUENCE

In every arithmetic triangle, all the cells of the first paedlrank and of the first per-
pendicular rank are equal to the generator.

For by the construction of the Triangle, each cell is equahti which precedes it in
its perpendicular rank, plus to that which precedes it ip#gallel rank. Now, the cells of
the first parallel rank have no other cells which precede timetimeir perpendicular ranks,
nor cells of the first perpendicular rank in their paralleiks: therefore they are all equal
among them and therefore to the first number generator.

Thus¢ equals G-zero, that isg equals G.

Thus A equalg)+zero, that is to say).

Thuso equals G-zero, andr equalso+zero.

And thus of the others.

SECOND CONSEQUENCE

In every arithmetic triangle, each cell is equal to the sunalbtells of the preceding
parallel rank, comprehended from its perpendicular ranktte first inclusively.

Letw be any cell: | say that it is equal to# + ¢ + ¢, which are cells of the superior
parallel rank from the perpendicular rankwto the first perpendicular rank.

This is evident by the sole interpretation of the cells bysthavhence they are formed.
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for A and¢ are equal among them by the preceding.
Thereforev equals R-6 + ¢ + ¢.
THIRD CONSEQUENCE

In every arithmetic triangle, each cell equals the sum otalls of the preceding per-
pendicular rank, comprehended from its parallel rank to fing inclusively.

Let C be any cell: | say that it is equal totB) + o, which are cells of the preceding
perpendicular rank, from the parallel rank of the cell C tfinst parallel rank.

This appears similarly by the sole interpretation of thdscel

For

C equals B‘&/.

I

g,
For equalss by the first.
Therefore C equals By + o.
FOURTH CONSEQUENCE

In every arithmetic triangle, each cell diminished by unstgqual to the sum of all cells
which are comprehended between its parallel rank and itp@edicular rank exclusively.

Let¢ be any cell: | say thag—G equals R-0 + ¢ + ¢ + A + 7 + 0+G, which are all
the numbers comprehended between the gan&BA and the rank Sy exclusively.

This is apparent similarly by interpretation.

For

£ equalsh + R+w
N——"
T+60+C
~~
oc+vY+B
G+o+ A
G.

Thereforeg equalsh\+R+7 + 0 + o + v+G+¢+G.
NOTE
I have said in the enunciationeach cell diminished by unifybecause unity is the
generator; but if it were another number, it would be necegtasay:each cell diminished
by the generator number.
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FIFTH CONSEQUENCE

In every arithmetic Triangle, each cell is equal to its reoigal.

For in the second bas#, it is evident that the two reciprocal celfs o, are equal to
one another and to G.

In the third A+, 7, itis clear likewise that the reciprocais A, are equal to one another
and to G.

In the fourth, it is clear that the extremes B,are again equal to one another and to G.

And those from among two, B, are clearly equals, since B equals-#4, andé equals
1 + 7; nowr + 1 are equal to Ay by that which is shown; therefore, etc.

Thus one will show in all the other bases that the reciproasdsequal, because the
extremes are always equal to G, and that the others will b&aiegal always by some
equal others in the preceding base which are reciprocalse¢@nother.

SIXTH CONSEQUENCE

In every arithmetic triangle, a parallel rank and a perpeodiar which have one same
exponent are composed of cells all equals the ones to thesothe
Because they are composed of reciprocals.
Thus the second perpendicular rankBEMQ is entirely equal to the second parallel
rank ¢16RSN.
SEVENTH CONSEQUENCE

In every arithmetic triangle, the sum of the cells of eachebiaglouble the cells of the
base preceding.

Let DBAX be any base. | say that the sum of its cells is double of the $uheaells of
the preceding A,

Because the extremes D, A\
equal the extremes A T,
and each of the others B, 6,
equal two of the other base A, Y+

Therefore D-A+B+6 equals 2A-2y) + 2.
The same thing is demonstrated similarly of all the others.

EIGHTH CONSEQUENCE

In every arithmetic triangle, the sum of the cells of eachelias number of the double
progression which begins with the unit of which the expoigthe same as that of the
base.

Because the first base is unity.

The second is double of the first, therefore it is 2.

The third is double of the second, therefore it is 4.

And thus to infinity.

NOTE

If the generator were not the unit, but another number, ab&same thing will be true:
but it would not be necessary to take the numbers of the dqubigession starting with
the unit, namely: 1, 2, 4, 8, 16, etc., but those of anothebtibprogression starting with
the generator 3, namely, 3, 6, 12, 24, 48, etc.
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NINTH CONSEQUENCE
In every arithmetic triangle, each base diminished by uisiggual to the sum of all the
preceding.
Because it is a property of the double progression.
NOTE

If the generator were other than unity, it would be necessarsay: each base dimin-

ished by the generator.
TENTH CONSEQUENCE

In every arithmetic Triangle, the sum of as many contigualis as one will wish from
its base, beginning with an extremity, is equal to as manyg oélthe preceding base, plus
again as many except one.

Let be taken the sum of as many cells as one will wish from tise Iz, for example,
the first three, B-B+6.

| say that it is equal to the sum of the first three of the prewgbiase A~y + 7, plus to
the first two of the same basetA).

Because D B 6.

~ ~~ ~~
equal A. At U+ .
Therefore D-B+-6 equals 2A-21) + .
DEFINITION

| call cells of the dividethose that the line which divides the right angle in half asro
diagonally, as the cells G, C, p, etc.
ELEVENTH CONSEQUENCE
Each cell of the divide is double of that which precedes itsiparallel or perpendicular
rank.
Let C be a cell of the divide. | say that it is doublefhfand also of B.
For C equal®+B, andf equals B, by the fifth consequence.
NOTE
All these consequences are on the subject of the equalitiehvare encountered in
the arithmetic Triangle. We are going to see now the proposj of which the following
proposition is the foundation.
TWELFTH CONSEQUENCE
In every arithmetic Triangle, two contiguous cells beingire same base, the superior
is to the inferior as the number of cells from the superiorhe top of the base to the
number of cells from the inferior to the bottom inclusively.
Let E, C be any two contiguous cells of one same base: | say that

E is to C as 2 to 3
inferior superior because there are because there are
two cells fromE three cells fronC
to the bottom: namely E, H to the top: namely G R

Although this proposition has an infinite number of cases,ill give a quite short
demonstration, in supposing 2 lemmas.

The first, that it is evident by itself, that this proportiaméncountered in the second
base; for it is quite clear thatistoo as 1 to 1.

The second, that if this proportion is found in any base, it @ found necessarily in
the base following.
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Whence itis seen that it is necessarily in all the basest fsiin the second base by the
first lemma; therefore by the second it is in the third basesefore in the fourth, and to
infinity.

It is necessary therefore only to prove the second lemmajsmitanner. If this propor-
tion is encountered in any one base, as in the fourthtbat is, if Disto B as 1 to 3, and
Btofas2to 2, and to A as 3to 1, etc.; | say that the same proportion will be found in
the following base, i1, and that, for example, E is to C as 2 to 3.

For Disto B as 1 to 3, by hypothesis.

Therefore D+ B istoBas 1+3 to 3.

~—— ~—~—~—

E toBas 4 to 3.
Similarly B is tod as 2 to 2, by the hypothesis.

Therefore B+ 0 to B, as 2+2 to 2.
N—— ——
C to B, as 4 to 2.
But B to E, as 3 to 4.

Therefore, by the disturbed proportion, C is to E as 3 to 2.

That which it was necessary to demonstrate.

One will prove it similarly in all the rest, since this proaflbased only on this that this
proportion is found in the preceding base, and that eachscetjual to its preceding, plus
to its superior, that which is true everywhere.

THIRTEENTH CONSEQUENCE

In every arithmetic Triangle, two contiguous cells beinthia same perpendicular rank,
the inferior is to the superior as the exponent of the basaisfduperior to the exponent
of its parallel rank.

Let F, C be any two cells in the same perpendicular rank. lisaty t

F isto C as 5 to 3
the inferior, the superior exponent of exponent of parallel
the base of C, rank of C.

Because Eisto Cas 2to 3.
Therefore E+C istoCas 2+3 to3.
SN—~— SN~

F isto C as 5 to 3.
FOURTEENTH CONSEQUENCE

In every arithmetic Triangle, two contiguous cells beindtie same parallel rank, the
greatest is to its preceding as the exponent of the base pptheeding to the exponent of
its perpendicular rank.

Let F, E be two cells in one same parallel rank: | say that

F is to E as 5 to 2
the greatest, the preceding exponentof  exponent of perpen-
the base of E, dicular rank of E.

Because Eisto Cas 2to 3.
Therefore E+C istoCas 2+3 toZ2.
SN—~— S~~~

F isto C as 5 to 2.
FIFTEENTH CONSEQUENCE

In every arithmetic Triangle, the sum of the cells of any flefaank is to the last of
this rank as the exponent of the triangle is to the exponetiiteofank.
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Let there be any triangle, for example the fourth BDsay that any rank that we take
there, as the second parallel, the sum of its cells, namely) + 6, istod as 4 to 2. For
¢+ + 6equals C,and Cistéas 4 to 2, by the thirteenth consequence.

SIXTEENTH CONSEQUENCE

In every arithmetic Triangle, any parallel rank is to theenibr rank as the exponent of
the inferior rank to the number of its cells.

Let there be any triangle, for example the fifttH: | say that, whatever rank that we
take there, for example the third, the sum of its cells is toghim of those of the fourth,
that is, A+B+C is to D+E as 4, exponent of the fourth rank, to 2 which is the exponent o
the number of its cells, for it contains 2 of them.

For A+B+C equals F, and BE equals M.

Now F isto M as 4 to 2, by the twelfth consequence.

NOTE

On is able to state it also in this way:

Each parallel rank is to the inferior rank, as the exponenindérior rank to the index
of superior rank.

For the exponent of a triangle, less the exponent of one o#itks, is always equal to
the number of the cells of the inferior rank.

SEVENTEENTH CONSEQUENCE

In every arithmetic Triangle, any cell that is added to allsef its perpendicular rank,
is to the same cell added to all cells of its parallel rank, las humber of the cells taken in
each rank.

Let B be any cell; | say that B + o is to B+A, as 3to 2.

| say 3, because there are three cells added in the antecaddriz, because there are
two in the consequent.

For, B+ + o equals C, by the thirteenth consequence; ard\Bequals E, by the
second consequence.

Now Cis to E as 3 to 2, by the twelfth consequence.

EIGHTEENTH CONSEQUENCE

In every arithmetic Triangle, two parallel ranks equallgtiint from the extremities, are
between them as the number of their cells.

Let GV( be any triangle, and two of its ranks equally distant fromekgemes, as the
sixth P+Q, and the second + ¢ + #+R+S+N: | say that the sum of the cells of one is to
the sum of the cells of the other, as the number of the cellsobhe is to the number of
the cells of the other.

For, by the sixth consequence, the second parallel fafdRSN is the same as the
second perpendicular raak)BEMQ, from which we have just proved this proportion.

NOTE

One is able to state also:

In every arithmetic Triangle, two parallel ranks, of whidtetexponents added together
exceed by unity the exponent of the triangle, are between #setheir exponents recipro-
cally.

For this is only one same thing as that which has just beencisied.
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LAST CONSEQUENCE

In every arithmetic Triangle, two contiguous cells beinghe divide, the inferior is
to the superior taken four times, as the exponent of the bafmbsuperior to a number
greater by the unit.

Let p, C be two cells of the divide: | say thatis to 4C as 5, exponent of the base of C,
to 6.

Because is double ofw, and C off; therefore 4 equals 2C.

Therefore4istoCas2to 1.
Now p is to 4C asv to 4, or by reason composed of w to C+ C to 49
——  ——

by the preceding consequences 5t03 1to2
or3to6
5t06

Thereforep is to 4C as 5 to 6.
That which it was necessary to demonstrate.

NOTE

We are able to draw from there many other proportions thatdpass, because each
one is easily able to conclude them, and that those who wéhwo have an interest in
them will find perhaps better than those that | am able to givend therefore with the
following problem, which makes the fulfillment of the treati

PROBLEM

Being given the exponents of the perpendicular and paredigks of a cell, to find the
number of the cell, without using the arithmetic Triangle.

Let, for example, it be proposed to find the number of thegefithe fifth perpendicular
rank and the third parallel rank.

Having taken all the numbers which precede the exponenegféhpendicular 5, namely
1, 2, 3, 4, let there be taken as many natural numbers, gavith the exponent of the par-
allel 3, namely 3, 4, 5, 6.

Let the first ones be multiplied by one another, and let theypcbbe 24. Let the others
be multiplied by one another, and let the product be 360, lwhiivided by the other
product 24, gives for quotient 15. This quotient is the nundoeight.

For¢ is the first of its base V by reason composed of all the ratidisetells in-between,
thatis to say¢ isto V,

by reason composed of Etop+ptoK+KtoQ+QtoV
— —~— Y~ ——

or by the twelfth consequence3to4 4t03 5to2 6tol

Thereforeg istoVas 3 by 4 by 5 by6,to4 by 3by2by 1.
But V is unity; therefore is the quotient of the division of the product of 3 by 4 by 5
by 6 by the product of 4 by 3 by 2 by 1.
NOTE
If the generator is not unity, it would be necessary to miytthe quotient by the gen-
erator.
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3. VARIOUS USAGES OF THE ARITHMETIC TRIANGLE OF WHICH THE
GENERATOR IS UNITY

After having given the proportions which are encounteredmgrthe cells and the ranks
of the arithmetic triangles, | pass to various usages oitlodsvhich the generator is unity;
this is that which we will see in the following treatises. Batlow much more than | give;
it is a strange thing how it is fertile in properties! Each deato be practiced; | caution
here only that, in all the following, | intend to speak onlytbg arithmetic Triangle of
which the generator is unity.

I
USAGE OF THE ARITHMETIC TRIANGLE
FOR THE NUMERIC ORDERS

We have considered in arithmetic the numbers of differeagpgssions; we have also
considered those of different powers and of different degirbut we have not, it seems to
me, examined enough those of which | speak, although they he@ery great usage: and
similarly they have no name; thus | have been obliged to gitbem; and because those
of progression, of degree and of power are already empldyagself serve with the one
of orders

| call thereforenumbers of the first ordehe simple units:

1,1,1,1,1, etc.

) 3 ) 3 )

| call numbers of the second ord#ére naturals which are formed by addition of the
units:

1, 2, 3, 4, 5, etc.
| call numbers of the third ordethose which are formed by the addition of the naturals,
which are called triangular,
1, 3, 6, 10, etc.
That is, that the second of the triangular, namely 3, equmdsstim of the first two
naturals, which are 1, 2; thus the third triangular 6 equadssum of the first three naturals
1, 2, 3, etc.

| call numbers of the fourth ordehose which are formed by addition of the triangular,
which are callegryramidal

1, 4, 10, 20, etc.
| call numbers of the fifth ordehose which are formed by addition of the preceding, to
which we have not given expressed name, and which we coulé tréangular-triangular:
1, 5, 15, 35, etc.

I call numbers of the sixth ordehose which are formed by addition of the preceding:
1, 6, 21, 56, 126, 252, etc.
And thus to infinity, 1, 7, 28, 84, etc.
1, 8, 36, 120, etc.
Now, if we makes a table of all the orders of the numbers, wherenark to the side
the exponents of the orders, and above the roots, in this way:
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Roots

1 2 3 4 5 et

Units ......... Order1{1 1 1 1 1 etc.

Naturals ......... Order2|1 2 3 4 5 etc.

Triangular ......... Order3|1 3 6 10 15 etc.

Pyramidal ......... Order4|1 4 10 20 35 etc.
etc.

we will find this table similar to the arithmetic Triangle.

And the first order of numbers will be the same as the first fnank of the triangle.
The second order of numbers will be the same as the seconliepasiak; and thus to
infinity.

For in the arithmetic Triangle, the first rank is all unitsgddhe first order of the numbers
is similarly all units.

Thus in the arithmetic Triangle, each cell, as the cell FatxiC+B+A, that is, that
it equals its superior, plus all cells which precede thisesigu in its parallel rank; as it
has been proved in the 2nd consequence of the treatise otridimgle. And the same
thing is found in each of the orders of the numbers. Becaosexample, the third of the
pyramidals 10 equals the first three of the triangulass 3 + 6, because it is formed by
their addition.

Whence it is seen manifestly that the parallel ranks of tlaadfle are nothing other than
the orders of the numbers, and that the exponents of thdgamiks are the same as the
exponents of the orders, and that the exponents of the pdicuear ranks are the same as
the roots. And thus the number, for example, 21, which in titaraetic Triangle is found
in the third parallel rank, and in the sixth perpendiculark;gbeing considered among the
numerical orders, will be of the third order, and the sixtlitebrder, or of the sixth root.

This shows that all that which has been said of the ranks athetafells of the arithmetic
Triangle agree exactly with the orders of the numbers, aatitlie same equalities and the
same proportions which have been noticed in the one, willdoed also in the others;
it will be necessary only to change the statements, by gubisg the terms which are
proper to the numerical orders, as those of root and of ofaiethose which are proper to
the arithmetic Triangle, as the parallel and perpendiaalak. | will give a small treatise
apart, where some examples which are stated there will makesy to see all the others.

USAGE OF THE ARITHMETIC TRIANGLE
FOR COMBINATIONS

The wordCombinationhas been taken in many different senses, so that, in order to
remove the ambiguity, | am obliged to speak as | intend it.

When among many things we give the choice of a certain nuralbéne ways of taking
from them as many as is permitted among all those which agepted, are called here
thedifferent combinations

For example, if from four things expressed by these fouetsttA, B, C, D, we permit
to take from them, for example, any two, all the ways of taKiagn them two different in
the four which are proposed, are calledmbinations

Thus we will find, by experience, that there are six diffenays of choosing two in
four; we are able to take A and B, A and C or Aand D, or B and C, on8, or C and
D.



12 BLAISE PASCAL

| do not count A and A as one of the ways of taking two; for thesereot different
things; this is only a repetition.

Thus | do not count A and B and next B and A as two different wéyswe take in the
one and in the other manner only the same two things, but dfereit order only; and
| take no naotice at all of the order; so that | am able to exptayself in a word to those
who are accustomed to consider the combinations, by sainmgysthat | speak only of
the combinations which are made without changing the order.

We will find likewise, by experience, that there are four waysake three things in
four; because we are able to take ABC, or ABD, or ACD, or BCD.

Finally we will find that we are able to take four from four bat dne way, namely,
ABCD.

| will speak therefore in these terms:

1lin 4 is combined 4 times.
2 in 4 is combined 6 times.
3in 4 is combined 4 times.
4in 4 is combined 1 time.
Or thus:
The number of combinations of 1 in 4 is 4.
The number of combinations of 2 in 4 is 6.
The number of combinations of 3in 4 is 4.
The number of combinationsof 4in 4 is 1.
But the sum of all the combinations, in general, that we aie tdomake in 4, is 15,

because the number of combinations of 1 in 4, of 2 in 4, of 3 iof4}, in 4, being added
altogether, make 15.

Next from this explication, | will give those consequenagthie form of lemmas.

LEMMAI

A number does not combine at all in a smaller; for example,biscombined at all in
2.

LEMMAII

1lin 1is combinedl time
21in 2is combinedl time
3in 3is combinedl time

And generally any number is combined one time only in its bqua

LEMMATI

1lin 1is combinedl time
1in 2is combined times
1lin 3is combined times

And generally the unit is combined in any number that it be asytimes as it contains
unity.
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LEMMA IV

If there are any four numbers, the first such as we will wish sicond greater by unity,
the third such as we will wish, provided that it is not smatiean the second, the fourth
greater by unity than the third: the number of combinatiofthe first in the third, added to
the number of combinations of the second in the third, eghalsiumber of combinations
of the second in the fourth.

Let there be four numbers such as | have said:

The first such as we will wish, for example, 1.

The second greater by the unit, namely, 2.

The third such as we will wish, provided that it is not smallean the second, for
example, 3.

The fourth greater by the unit, namely 4.

| say that the number of combinations of 1 in 3, plus the nunabeombinations of 2
in 3, equals the number of combinations of 2 in 4.

Let there be any three letters, B, C, D.

Let there be the same three letters, and one more A, B, C, D.

Take, according to the proposition, all the combinationsroe letter in the three, B, C,
D. There will be 3, namely B, C, D.

Take in the same three letters all the combinations of twerethwill be 3, namely, BC,
BD, CD.

Take finally in the four letters A, B, C, D, all the combinattoaf 2; there will be 6,
namely, AB, AC, AD, BC, BD, CD.

It is necessary to demonstrate that the number of combimatbl in 3 and those of 2
in 3, equal those of 2 in 4.

This is easy, for the combinations of 2 in 4 are formed by thalgioations of 1 in 3,
and by those of 2 in 3.

In order to see the technique, it is necessary to remark thahg the combinations of
2 in 4, namely, AB, AC, AD, BC, BD, CD, there are of them where thtter A is used,
and the others where it is not.

Those where it is not used are BC, BD, CD, which consequenglyamed of two of
the three letters B, C, D; therefore these are the combimaté 2 in these three, B, C,
D. Therefore the combinations of 2 in these three letters ,H) Gnake a portion of the
combinations of 2 in those four letters A, B, C, D, since thesnf those where A is not
used.

Now if of the combinations of 2 in 4 where A is used, namely AE; AD, one omits
the A, there will remain a single letter of these three B, CnBmely B, C, D, which are
precisely the combinations of one letter in the three, B, CTRerefore if in the combi-
nations of one letter in the three, B, C, D, we add to each tterld, and that thus we
have AB, AC, AD, we will form the combinations of 2 in 4, whereg\used; therefore the
combinations of 1 in 3 are a portion of the combinations of 2.in

Whence it is seen that the combinations of 2 in 4 are formedhéycombinations of 2
in 3, and of 1 in 3; and hence that the number of combinatio2siof4 equals that of 2 in
3,andof1in 3.

We will show the same thing in all the other examples, as:

The number of combinations of 29 in 40;

And the number of combinations of 30 in 40:

Equals the number of combinations of 30 in 41.

Thus the number of combinations of 15 in 55;
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And the number of combinations of 16 in 55:
Equals the number of combinations of 16 in 56.
And thus to infinity. That which it was necessary to demonstra

PROPOSITION

In every arithmetic Triangle, the sum of the cells of any flataank equals the number
of combinations of the exponent of the rank in the exponehedfiangle.

Let there be any triangle, for example the fourth GDsay that the sum of the cells of
any parallel rank, for example the secondt v + 6, equals the sum of the combinations
of this number 2, which is the exponent of this second ranthisinumber 4, which is the
exponent of this triangle:

Thus the sum of the cells of the 5th rank of the 8th triangleaéxithe sum of the
combinations of 5 in 8, etc.

The demonstration of it will be short, although there arerdimity of cases, by means
of these two lemmas.

The first, which is evident in itself, that in the first triaeghis equality is found, be-
cause the sum of the cells of its unique rank, namely G, oyuedguals the sum of the
combinations of 1, exponent of the rank, in 1, exponent otiaagle.

The second, that, if an arithmetic Triangle is found in whicis proportion is encoun-
tered, that is, in which, whatever rank that one takes, ipkap that the sum of the cells
are equal to the number of combinations of the exponent aftthlein the exponent of the
triangle: | say that the following triangle will have the saproperty.

Whence it follows that all the arithmetic Triangles havestagquality, for it is found in
the first triangle by the first lemma, and similarly it is ageindent in the second; therefore
by the second lemma, the following will have it likewise, amehce the next again; and
also to infinity.

It is necessary therefore only to demonstrate the seconahiéem

Let any triangle, for example, the third, in which we supptbs this equality is found,
that is, that the sum of the cells of first rank-G + 7 equals the number of combinations
of 1 in 3, and that the sum of the cells of the second rank equals the combinations
of 2 in 3; and that the sum of the cells of the third rank A eqtlaéscombinations of 3 in
3; | say that the fourth triangle will have the same equadihyd that, for example, the sum
of the cells of the second rargk+ ¢ + 6 equals the number of combinations of 2 in 4.

Becausep + ¢ + 0 equals O+ + 0
+ Gto+m

. N———

By the hypothesis or the number of+  or the number of
combinations of 2 combinations of 1
in 3. in 3.
By the 4th lemma Or the number of combinations
of 2in 4.

One will demonstrate likewise all the others.
That which it was necessary to demonstrate.



THE ARITHMETIC TRIANGLE 15

PROPOSITIONI

The number of any cell that it be equals the number of comibinabf a number less
by unity than the exponent of its parallel rank, in a numbeslby unity than the exponent
of its base.

Let there be any cell, F, in the fourth parallel rank and ingheh base: | say that it
equals the number of combinations of 3 in 5, less by unity thand 6, for it equals the
cells A+B+C. Therefore by the preceding, etc.

PROBLEMI — PROPOSITIONII

Two numbers being proposed, to find how many times the onenisiced in the other
by the arithmetic Triangle.
Let the proposed numbers be 4, 6; it is necessary to find hovihshisscombined in 6.

First way.

Let the sum of the cells of the fourth rank of the sixth triamge taken: it will satisfy the
guestion.

Second way.

Let the 5th cell of the 7th base be taken, because the numbé&rsXceed by unity the
given 4, 6: its number is that which one demands.

CONCLUSION

By the relation that there is of the cells and ranks of theharétic Triangle to the com-
binations, it is easy to see that all that which has been pro¥¢he ones agree with the
others according to their manner. It is this that | will prauea little treatise in a small
treatise that | have made on Combinations.

USAGE OF THE ARITHMETIC TRIANGLE
IN ORDER TO DETERMINE THE DIVISIONS WHICH WE MUST MAKE
BETWEEN TWO PLAYER WHO PLAY IN MANY GAMES

In order to understand the rules of the divisions, the firstghhat it is necessary to
consider is that the money that the players have staked igah® no longer belongs to
them, for they have given up the property; but they have vedein exchange the right to
expect that which chance is able to give to them of it, aceqgyth the conditions to which
they have agreed first.

But, as this is a voluntary act, they are able to mutuallyrioget it; and thus, in any term
that the game is found, they are able to quit it; and, to theraonof that which they have
made on entering it, to renounce to the expectation of chamekto return to each of them
the ownership of some thing. And in this case, the settleroktitat which must belong
to them must be so proportioned to that which they had rigleiimect from fortune, that
each of them finds entirely equal to take that which one asdighim, or to continue the
adventure of the game: and this just distribution is catlfeidivision

The first principle which shows in what way one must make thesiin, is this here:

If one of the players is found in such condition that, whatéappens, a certain sum
must belong to him in case of loss or of gain, without that cieais able to take it away
from him, he must not make any division of it, but take the veha$ guaranteed, because
the division must be proportioned to chance, since there ishance to lose, he must get
all without part.
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The second is this one here: if two players are found in sucldition that, if the one
wins, a certain sum will belong to him, and if he loses, it willong to the other; if the
game is of pure chance, and if there is as much chance for the®ior the other and
consequently no more reason to win for the one than for theroftthey wish to separate
without playing, and to take that which belongs to them legitely, the division is that
they separate the sum which is at risk in half, and that edastais own.

FIRST COROLLARY

If two players play in a game of pure chance, with the conditimat, if the first wins, a
certain sum will be restored to him, and if he loses, a lessitbe restored to him; if they
want to separate without playing, and each to take that whabngs to them, the division
is that the first take that which is restored to him in the caSless, and moreover the half
of the excess by which that which would be restored to him $e cd gain surpasses that
which is restored to him in the case of loss.

For example, if two players play with the condition that hiétfirst wins, he will obtain
8 pistoles, and if he loses, he will obtain 2 of them: | say thatdivision is that he take
these 2, plus the half of the excess of 8 over 2, that is, 3 nh@eguse 8 surpasses 2 by 6,
of which the half is 3.

For, by hypothesis, if he wins, he obtains 8, that is;26and if he loses, he obtains 2;
therefore these 2 belong to him in case of loss and of gainicandequently, by the first
principle, he must not make any division, but take them entBut for the 6 others they
depend on chance; so that if it is favorable to him, he will thiem, otherwise, they will
be restored to the other; and by hypothesis, there is no mas®n they be restored to the
one or to the other: therefore the division is that they ssieathem in half, and that each
take his own, which is what | have proposed.

Therefore, in order to say the same thing in other terms, dlse of the loss belongs to
him, plus half of the difference of the cases of loss and afigai

And, hence, if in case of loss, A belongs to him, and in caseaof §+B, the division
is that he takes A 3B.

SECOND COROLLARY

If two players are in the same condition that we just said yl et the division is able
to be made in this fashion, which returns to the same: thatalleat the two sums of gain
and of loss and that the first take the half of this sum; thathiat we join 2 with 8 and it
will be 10, of which the half 5 will belong to the first.

Because the half of the sum of two numbers is always the sartreedssser, plus the
half of their difference.

And this is demonstrated thus:

Let A be that which is restored in case of loss, andBthat which is restored in case of
gain. | say that the division is made by collecting these twmbers, which are AA+B,
and by giving the half to the first, which §A+%A+%B. Because this sum equalsh% B,
which has been proven to make a just division.

These fundamentals being set down, we pass easily to defagthe division of the
two players, who play for as many games as we will wish, in aagesthat they find
themselves, that is, what division it is necessary to makenthey play in two games, and
when the first has one to nothing, or when they play in thregyaren the first of them has
one to nothing, or when he has two to nothing or when he hasdwaod; and generally to
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any number of games that they play, and in whatever gain okgahat there be, and the
one, and the other.

On which the first thing that it is necessary to remark, is that players who play to
two games, of which the first of them has one to nothing, ardénsame condition as
two others who play to three games, of which the first has twberf, and the other one:
for there is this in common that, in order to finish, the firsike.only one game and the
other two: and it is in this that the difference of the advgetaconsists, and what must
regulate the divisions; so that it is necessary properhatgehegard only to the number of
games which remain for the one and for the other to win, andmtite number of those
which they have won, because, as we have already said, tyerplfinding themselves in
the same state, when playing to two games, one of them ha®omhing, as two who
playing to twelve games, one of them has eleven to ten.

It is necessary therefore to propose the question in this way

Being proposed two players, to each of which a certain numobgames are lacking in
order to end, to make the division.

I will give here the method, that | will pursue solely in twotbree examples which will
be so easy to continue, that it will not be necessary to giveerabthem.

In order to make the thing general without omitting anythingill take for the first ex-
ample, that it is perhaps not appropriate to touch, becaisstoo clear; | do it nevertheless
in order to start at the beginning; it is this:

First case.

If to one of the players no game is lacking, and to the otheresdahe entire sum belongs
to the first For he has won it, since none of the games is lacking in whéchnaist win it.

Second case.

If to one of the players a point is lacking, and one to the qtther division is that they
divide the money in half, and that each take his own: thisidest by the second principle.
It is likewise if two games are lacking to the one and two todtieer; and likewise any
number of games which are lacking to the one, if as many akérigdo the other.

Third case.

If to one of the players a game is lacking, and to the other tveee is the art to find the
division.

Consider that which would belong to the first player (to wharty@ne point is lacking)
in case of gain of the game which they are going to play, antithexwhich would belong
to him in case of loss.

It is clear that if the one to whom only one point is lackingnwithis game which is
going to be played, it will no longer be lacking to him: theresf all would belong to him
by the first case. But, on the contrary, if the one to whom two@mare lacking wins that
which they are going to play, no more than one will be lackim@im; therefore they will
be in such condition, that one will be lacking to the one, and t the other. Therefore
they must divide the money in half by the second case.

Therefore if the first wins that game which is going to be pthyeall belongs to him,
and if he loses, the half belongs to him; therefore, in caatthiey wish to separate without
playing this gameg belongs to him by the second corollary.
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And if we wishes to propose an example of the sum that they fiaything will be well
more clear.

Let us put that this is 8 pistoles; therefore the first in cdggm, must have the whole,
which is 8 pistoles, and in case of loss, he must have the Hatthnis 4; therefore there
belongs to him in case of division the half®f+ 4, that is, 6 pistoles of 8; for-84 makes
12, of which the half is 6.

Fourth case.

If to one of the players one game is lacking and three to therpthe division will be
found likewise by examining that which belongs to the firstise of gain and of loss.

If the first wins, he will have all his games, and thereforettadl money, which is, for
example, 8.

If the first loses, no more than 2 games will be necessary totther to which 3 were
necessary. Therefore they will be in a state, that one garthéevhecessary to the first,
and two to the other; and hence, by the preceding case, 6gsistdl belong to the first.

Therefore in case of gain, 8 is necessary to him, and in cales®6; therefore, in case
of division, the half of these two sums belong to him, nameéj\pecausé + 8 make 14,
of which the half is 7.

Fifth case.

If to one of the players one game is lacking and to the other fba thing is likewise.

The first, in case of gain, wins all, which is, for example, Bdan case of loss, one
game is lacking to the first and three to the other; therefgisibles of 8 belong to him;
therefore in the case of division, the half of 8 belongs to,hphas the half of 7, that is,;

Sixth case.
Thus, if one game is lacking to one and five to the other; andfinity.

Seventh case.

Likewise, if two games are lacking to the first, and three &dther; for it is necessary
always to examine the case of gain and of loss.

If the first wins, one game will be lacking to him, and threehe bther; therefore by
the fourth case 7 of 8 belong to him.

If the first loses, two games will be lacking to him, and to tltteen two, therefore by the
second case, the half belongs to each, which is four; ther@iacase of gain, the first will
have 7 of them and in case of loss, he will have 4 of them; tbeegh case of division, he
will have the half of these two together, namelg,.S

By this method we will make the divisions under all sorts ofditions, by taking
always that which belongs in case of gain and that which lgelan case of loss, and
assigning for the case of division the half of these two sums.

Here is one of the ways to make divisions.

There are two others, the one by the arithmetic triangle taadther by combinations.
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METHOD FOR MAKING THE DIVISIONS BETWEEN TWO PLAYERS
WHO PLAY MANY GAMES BY MEANS OF THE ARITHMETIC TRIANGLE.

Before giving this method, it is necessary to make this lemma

LEMMA

If two players play a game of pure chance, with condition thifahe first wins, some
portion of the sum that they wager will belong to him, expeedsy a fraction, and that, if
he loses, a half portion of that same sum will belong to himpressed by another fraction:
if they wish to separate themselves without playing, thelitiom of the division will be
found in this manner. Let the two fractions be reduced to #mesdenominator, if they are
not; let a fraction be taken of which the numerator is the sdrhe two numerators, and
the denominator double of the preceding: this fraction espes the portion which belongs
to the first of the sum which is in the game.

For example, let belong in case of g%imf the sum which is in play, and let in the case
of Ioss,% of it belong to him. | say that that which belongs to him in cabdivision, will be
found by taking the sum of the numerators, which is 4, and tubtk of the denominator,
which is 10, from which one makes the fracti%a

For, by that which has been demonstrated in the second anrall was necessary to
collect the case of gain and of loss, and to take the half; l@wstim of the two fractions
3 + 1is 2, which is made by the addition of the numerators, and itsikdtfund by dou-
bling the denominator, and thus one H%s That which it was necessary to demonstrate.

Now, the rules are general and without exception, whatevwestored in case of loss or
of gain; because if, for example, in case of g%rbelongs, and in case of loss nothing, in
reducing the two fractions to the same denominator, we varMe@— for the case of gain,
and% for the case of loss; therefore, in case of division, it isassary this fractios}, of
which the numerator equals the sum of the others, and thewlaator is the double of the
preceding.

Thus if in case of gain, all belongs, and in case of Iéssby reducing the fractions
to like denomination, we will havé for the case of gain, an§ for the one of the loss;
therefore in case of divisio% belongs.

Thus, if in case of gain all belongs and in case of loss nothing division will be
clearly 1; for the case of gain i$, and the case of lo§stherefore the division ig.

And thus of all the possible cases.

PROBLEM | — PROPOSITION I

Two players being proposed, to each of whom a certain numbgames are lacking to
end, to find by the arithmetic Triangle the division that ihescessary to make (if they wish
to separate themselves without playing), having regardhéogames which are lacking to
each.

Let the base in the triangle be taken in which there are as oali/as games lacking
to the two together: next let be taken in this base as manygranis cells starting with the
first, as games lacking to the first player, and let us takeuheaf the numbers. Therefore
there remain as many cells as games lacking to the othersltaka further the sum of the
numbers. These sums are the one to the other as the advamittgeplayers reciprocally;
so that if the sum that they play is equal to the sum of the nusntifeall the cells from the
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base, there will belong to each that which is contained in asyntells as games lacking
to the other; and if they play for another sum, it will belongtch of them in proportion.

For example, let there be two players, to the first of which games are lacking, and
to the other 4: it is necessary to find the division.

Let these two numbers 2 and 4 be added, and let their sum bigtiée Isixth base of the
arithmetic Triangle P be taken, in which there are consequently six cells P, M, 1§, 6.
Let as many cells be taken, starting at the first P, as gamkisi¢ato the first player, that
is, the first two P, M; therefore there remains as many gamietother, thatis, 4, ky, S,

0.

| say that the advantage of the first is to the advantage ofabensl, as Fw+S+46 to
P+M, that is that, if the sum which is played is equal t¢ +F+w-+S+4, to the one to
whom two games are lacking belong the sum of the four éeliS+w+F and to the one
to whom 4 games are lacking, the sum of the two celld/P And if they play for another
sum, it belongs to them in proportion.

And in order to say it generally, any sum that they wager,ehmlongs to the first a
portion expressed by this fractiqﬂ% of which the numerator is the sum of
the 4 cells of the other, and the denominator is the sum ohaltells; and to the other a
portion expressed by this fractiogm of which the numerator is the sum of the
two cells of the other, and the denominator the same sum tialiells.

And, if one game is lacking to the one, and five to the othehédirst belongs the sum
of the first five cells -M+F+w+S+4, and to the other the sum of the céll

And if six games are lacking to the one, and two to the otherditision will be found
in the eighth base, in which the first six cells contain thaitlbelongs to the one to whom
two games are lacking, and the two others, that which belamgse one to whom six of
them are lacking; and thus to infinity.

Although this proposition has an infinity of cases, | will demstrate it nevertheless in
a few words by means of two lemmas.

The first, that the second base contains the divisions oflthyeps to whom two games
are lacking in all.

The second, that if any base contains the divisions of thmedbm as many games are
lacking as it has cells, the following base will be the sarhat ts it will contain also the
divisions of the players to whom as many games are lackinghasicells.

Whence | conclude, in a word, that all the bases of the aritieni@iangle have this
property: for the second has it by the first lemma; therefbyethe second lemma, the
third has it also, and consequently the fourth; and to infiflibhat which it was necessary
to demonstrate.

It is necessary therefore only to demonstrate these 2 lemmas

The first is evident of itself; because if one game is lackmghte one and one to the
other, it is evident that their conditions areq@to o, that is as 1 to 1, and that this fraction
belongs to each,

o o1
e which |32.

The second will be demonstrated in this way.

If any base, as the fourth ) contains the divisions of those to whom four games are
lacking, that is that, if one game is lacking to the first, ame:é to the second, the portion
which belongs to the first of the sum which is played, is thaicWlis expressed by the
fraction s2tB1% _ which has for denominator the sum of the cells of this basd,fan

D+B+6+X°
numerator its first three; and that, if two games are lackirty¢ one, and two to the other,
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the fraction which belongs to the firstﬁ%; and that, if three games are lacking to

the first, and one to the other, the fraction of the firstig>,— etc.

| say that the fifth base contains also the divisions of thosetiom five games are
lacking; and that if two games, for example, are lacking ®fttst, and three to the other,
the portion which belongs to the first of the sum which is pthyis expressed by this
fraction:

H+E+C
H+E+C+R+pu

For in order to know that which belongs to two players to eaciwltom some games
are lacking, it is necessary to take the fraction which wcatbng to the first in case
of gain, and that which would belong to him in the case of I@sgting them with same
denominator, if they are not, and forming a fraction, of whibe numerator is the sum of
the two others, and the denominator double of the other, dyptaceding lemma.

Examine therefore the fractions which would belong to owt filayer in case of gain
or loss.

If the first, to whom two games are lacking, wins that whichythee going to play, no
more than one game will be lacking to him, and to the otheragsnthree; therefore four
games are lacking to them in all: therefore, by hypothebgsiy ivision is found in the
fourth base, and to the first will belong this fractigh£2+%~.

If on the contrary the first loses, two games will always bé&ilag to him, and two alone
to the other; therefore by hypothesis, the fraction of thst firll be %. Therefore,
in the case of division, to the first will belong this fraction

D+B+60+D+B, thatis, H+E+C
2D + 2B + 20 +2), thatis, H+E+C+R+pu’

That which it was necessary to demonstrate.

Thus this is demonstrated among all the other bases withoytdi#fference, because
the foundation of this proof is that a base is always doubliésgfreceding by the seventh
consequence, and that, by the tenth consequence, as mé&asene will wish of one
same base are equal to as many of the base preceding (whibtlvagsathe denominator
of the fraction in case of gain) plus again in the same celf® excepted (which is the
numerator of the fraction in case of loss); that which beingetgenerally everywhere, the
demonstration will be always without obstacle and universa

PROBLEM Il — PROPOSITION I

Having proposed two players who stake each one same sum wéttan number of
games proposed, to find in the arithmetic Triangle the valiuthe last game out of the
money of the loser.

For example, let two players each wager three pistoles ingames: one demands the
value of the last game out of the three pistoles of the loser.

Let the fraction be taken, which has unity for numerator, fomalenominator the sum
of the cells of the fourth base, since we play to four gamesylthat this fraction is the
value of the last game out of the stake of the loser.

For if two players playing to four games, one of them has ttoe®thing, and that thus
one is lacking to the first, and four to the other, it has beenatestrated that that which
belongs to the first for the gain that he has made for his firsetlhames, is expressed by
this fraction;=tEESER which has for denominator the sum of the cells of the fifth base

TE+CHR+p |
and for numerator its first four cells; therefore, there rermaut of the total sum of the two
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stakes only this fractiorﬁm, which will be acquired by the one who has already
the first three games in case that he won the last; of whichahe\of this last out of the
sum of the two stakes is
I that is, unity
H+E+C+R+p thatis, 2D+2B+260+2)\°

Now, since the total sum of the stakes is22B+26 + 2, the sum of each stake is
D+B+6 + \; therefore the value of the last game out of the sole stak&eidser is
this fractionm, double of the preceding, and which has for numerator unitgl, a
for denominator the sum of the cells of the fourth base. Thaitlwwas necessary to
demonstrate.

PROBLEM IIl — PROPOSITION Il

Two players being proposed who each stake one same sum itamaarmber of given
games, to find in the arithmetic Triangle the value of the fieshe out of the stake of the
loser.

For example, let two players each stake 3 pistoles on fouegaone demands the value
of the first out of the stake of the loser.

Let be added to the number 4 the number 3, less by unity, artidesum be 7; let
the fraction be taken which has for denominator all the a#lithe seventh base, and for
numerator the cell of this base which is encountered in thiei namely, this fraction

p
V4+Q+K+p+E+N+ ('
| say that it satisfies the problem.
For if two players playing to four games, the first has one tilnimg, there will remain
three to win to the first, and four to the other; thereforeehmslongs to the first out of the
i i V+Q+K+ ; ;
sum of the two stakes this frachm, which has for denominator all the
cells of the seventh base, and for numerator its first fous.cel
Thereforel’+Q+K+-p out of the sum total of the two stakes belongs to him, expresse
by V+Q+K+p + £+N+¢; but this last sum being the collection of two stakes, thé hal
was set into the game, namelyl-‘(Q+K+%p (because V-Q+K is equal to¢ +N+£).
Therefore this iS%p, that is,w, no more that he had in entering the game; therefore
he has won out of the total sum of the two stakes a portion sgprkeby this fraction
WMW’ therefore he has won oqt of the stake of th-e-loser a portiochwhill
be double of this here, namely, that which is expressed kyfthction:
P
V+Q+K+p+E+N+(C

Therefore the gain of the first game has acquired this frat¢tidim; therefore its value
is such.

COROLLARY

Therefore the value of the first game of two out of the stakieedloser, is expressed by
this fraction.

For in taking this value according to the rule which comesifroeing given it, it is
necessary to take the fraction that has for denominatoreh® af the third base (because
the number of the games on which we play is two, and the nurebetiy unity is 1, which
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with 2 makes 3), and for numerator the cell of this base wtscin ithe divide; therefore
one will have this fractlorsm.
Now the number of the cell is 2, and the numbers of the cellsi + 7, arel +2 + 1.
i iqn 2 ic 2 ic 1
Therefore we haye this fra.ctlopm, thatis, 7 .that iS5 _
Therefore the gain of the first game has acquired to him thiifsn; therefore its value
is such. That which it was necessary to demonstrate.

PROBLEM IV — PROPOSITION IV

Two players being proposed who each stake one same sum diaimcember of given
games, to find by the arithmetic Triangle the value of the ségame on the stake of the
loser.

Let the given number of games on which we play be given, 4;neisessary to find the
value of the second game on the stake of the loser.

Let the value be taken of the first game by the preceding pneblesay that it is the
value of the second.

For two players playing in 4 games, if one of them has two toendime fraction which
belongs to him is this,

P+M+F+w
P+M+F+w+S+4’
which has for denominator the sum of the cells of the sixtrepbasd for numerator the
sum of the first four; but there was set into the game thisifsact

P+M+F+w
P+M+F+w+S+4

. : . i PEMA4F4
nar_‘nely, the half of aII_. Therefqre there remains to him ohghis fraction: 55,
which is the same thing as this:

14 .
V+Q+K+p+E+N+(’
therefore he has won out of the half of the entire sum, thatispf the stake of the loser,
this fraction:

2p
V+Q+K+p+E+N+(

double the preceding.

Therefore the gain of the first two games had acquired to himfthction out of the
money of the loser, which is the double of that which the fiestihg had acquired to him
by the previous; therefore the second game has as much eddaiinim as the first.

CONCLUSION

One is able to conclude easily, by the relationship thaetieof the arithmetic Triangle
to the divisions which must be made between two playersttiggbroportions of the cells
which have been given in thEeatise of the Trianglehas some consequences which are
extended to the value of the divisions, which are very easyraw, and of which | have
made a small discourse, in treating some divisions, whigk the intelligence and the
means to extend them further.
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USAGE OF THE ARITHMETIC TRIANGLE
TO FIND THE POWERS OF BINOMIALS AND OF APOTOMES

If it is proposed to find any power, as the fourth degree of aimial, of which the
first term is A, the other unity, that is that it is necessarfirid the square-square ofAl,
it is necessary to take in the arithmetic Triangle the fiftseganamely that of which the
exponent5 is greater by unity than 4, exponent of the ordgygsed. The cells of this fifth
base are 1, 4, 6, 4, 1, of which it is necessary to take the firster 1 for coefficient of
Ain the degree proposed, that is, of /Aext it is necessary to take the second number of
the base, which is 4, for coefficient of A at the degree nexriof, that is of £, and take
the next number of the base, namely 6, as coefficient of A atifgeee inferior, namely
AZ, and the next number of the base, namely 4, as coefficient dftlleadegree inferior,
namely root A, and to take the last number of the base 1 forlatesoumber: and thus we
will have 1A* +4A3 +6A2 4 4A+1 which will be the square-square power of the binomial
A+1. So that if A (which represents all numbers) is unity, and thas the binomial A-1
is the binary, this power

1A* +4A% + 6A% +4A + 1

will be now
L1 44134612441 +1;

thatis one time the square-square of the unit A, thatis, 1

Four times the cube of 1, that is, 4
Six times the square of 1, that is, 6
Four times unity, that is, 4
Plus unity 1
Which added make 16

And indeed the square-square2at 16.

If A 'is another number, as 4, and therefore that the binomigl As 5, then its square-
square will be always, according to this method; #AtA3 +6A2 +4A+1, which signifies
now:

1.4% +4.4% +6.4% + 44+ 1;

thatis one time the square-square of 4, namely 256

Four times the cube of 4, namely 256
Six times the square of 4 96
Four times the root 4, 4
Plus unity 1
of which the sum 625

makes the square-square of 5: and indeed the square-sduaie @25. And thus some

other examples.
If one wishes to find the same degree of the binomiaPAit is necessary to take of the

same
1A +4A% + 6A% +4A + 1
and next write these four numbers 2, 4, 8, 16, which are thefdéits degrees of 2, under
the numbers 4, 6, 4, 1; that is, under each of the numbers tiethe, in leaving the first in
this manner:
1A% +4A% + 6A% +4A + 1
2 4 8 16

and multiply the numbers which correspond by one anothenaio t
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1A+ 443+ 6A%2+ 44+ 1
2 4 8 16
1AT+ 8A%+ 24A%+ 32AT+16
And thus we will have the square-square of the binomialRAso that if A is unity, this
square-square will be such:
One times the square-square of the unitA 1

Eight times the cube of unity 8
24,12 24
32,1 32
Plus the square-square of 2 16
of which the sum 81

will be the square-square of 3: and indeed 81 is the squarars@f 3.
And if Ais 2, then A+2 will be 4, and its square-square will be:

One times the square-square of A or of 2, namely 16

8,23 64
24,22 96
32,2 64
Plus the square-square of 2 16
of which the sum 256

will be the square-square of 4.
In the same manner we will find the square-square #8Ain setting out in the same
way:
A4 443+ 6A%+ 44+ 1
and below the numbers 3 9 27 81
1A*+ 12A°+ 5H4A°+ 108A+ 81
which are the first four degrees of 3; and multiplying the esponding numbers, we will
find that the square-square 4f+ 3.

And thus to infinity. If instead of square-square we wish td fime square-cube, or the
fifth degree, it is necessary to take the sixth base, and tasishave said of the fifth; and
thus of all the other degrees.

We will find likewise the powers of the apotomes-A, A—2, etc. The method is
entirely similar, and differs only in the signs, because dlgms of+ and of — always
follow themselves alternately, and the sigrHefs always the first.

Thus the square-square of-A will be found in this way. The square-square of-A
is by the preceding ruleA* + 4A3 + 6A2 + 4A+1. Therefore in changing the signs as |
have said, one will haveA* — 4A3 + 6A2? — 4A+1. Thus the cube of A2 will be found
similarly. For the cube of A-2, by the preceding rule, is A4 6A2 + 12A+8. Therefore
the cube of A-2 will be found by changing the signs

A3 —6AA% + 12A — 8.

And thus to infinity.
I have not given the demonstration of all this, because oérsthivho have treated it
already, as Hérigone, besides that the thing is evidenséifi
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