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The theory of series is one of the most important objects of Analysis: all problems
which reduce to some approximations, and consequently nearly all the applications of
Mathematics to Nature, depend on this theory; thus we see that it has principally fixed
the attention of the geometers; they have found a great number of beautiful theorems
and ingenious methods, either in order to expand function into series, or in order to sum
series exactly or for approximation; but they have attained them only by some indirect
and particular ways, and we can not doubt that, in this branch of Analysis, as in all
others, there is a general and simple manner to view it, from which the already known
truths derive, and which lead to many new truths. The research of a similar method is
the object of this Memoir; that to which I am come is founded on the consideration of
that which I name generating functions: this is a new kind of calculus which we can
name calculus of generating functions, and which has appeared to me to merit being
cultivated by the geometers. I exhibit first some very simple results on these functions
and I deduce from them a method to interpolate series, not only when the consecutive
differences of the terms are convergent, that which is the sole case which we have
considered until now, but yet when the proposed series converges towards a recurrent
series, the final ratio of its terms being given by a linear equation in finite differences of
which the coefficients are constants. Integration of this kind of equation is a corollary
of this analysis. In passing next from the finite to the infinitely small, I give a general
formula to interpolate the series of which the final ratio of the terms is represented by
a linear equation in infinitely small differences, of which the coefficients are constants;
whence I conclude the integration of these equations. By applying the same method
to the transformation of series, there results from it a quite simple way to transform
them into some others of which the terms follow a given law; finally the relationship
of the generating functions to the corresponding variables leads me immediately to the
singular analogy of the positive powers with the differences and of the negative powers
with the integrals, an analogy observed first by Leibnitz, and since brought to greater
light by Mr de la Grange (Mémoirs de Berlin, 1772); all the theorems of which the
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second of these two great geometers is attained in the Memoirs cited after this analogy,
and many others again, are deduced with the greatest ease in this report.

By considering in the same manner series in two variables, I exhibit a general
method to interpolate them, not only in the case where the consecutive differences
of the terms of the series are convergent, but again when the series converges towards
a récurro-récurrente series, the final ratio of its terms being given by a linear equation
in partial finite differences of which the coefficients are constants; whence result the
integration of this kind of equations. This material is of the greatest importance in the
analysis of chances; I believe to be the first who has considered it [see Books VI and
VII of the Savants étrangers]. Mr. de la Grange has since treated it by a very good
and very learned analysis in the Mémoires de Berlin for the year 1775; 1 dare to hope
that the new manner in which I envision it in this Memoir will not offend the geome-
ters. It follows from my researches that the integration of any linear equation in partial
finite differences, of which the coefficients are constants, can be restored to that of a
linear equation in infinitely small differences, by means of definite integrals taken with
respect to a new variable; I name definite integral an integral taken from one deter-
mined value of the variable to another determined value. This remark, more curious
than useful in the theory of finite differences, becomes very useful when we transport
it to the equations linear in the infinitely small partial differences: it gives a means of
integrating them in an infinity of cases which withstand all the known methods, and,
without it, it had been nearly impossible to foresee the forms of which the integrals are
then susceptible. But, in order to render that which I just said more sensible, it will not
be useless to recall in a few words that which we have discovered on linear equations
in infinitely small partial differences of the second order. The integral of these equa-
tions contain, as we know, two arbitrary functions; we have, moreover, remarked that
these functions can be, in the integral, affected with the differential sign d; and it is, if
I do not deceive myself, to Messrs. Euler and de la Grange that we owe this important
remark to which they have been led by the theory of sound, in the case where the air is
considered with its three dimensions.

These two great geometers have next extended their methods to some equations
more complicated than those of this problem; but there remains to find a method by
means of which we could generally, either integrate any linear equation of the second
order, or be assured that its integral is impossible in finite terms, by having regard only
to the sole variables that they contain: this is the object of a Memoir! that I have inserted
in the Volume of the Academy for the year 1773. In this Memoir, I have demonstrated:
1° that the arbitrary functions can exist in the integral only under a linear form; 2 ° that
if the integral is possible in finite terms, by considering only the sole variables of the
equation, one of the two arbitrary functions is necessarily delivered with the integral
sign [. I have given next a general method to have in this case the complete integral
of the differential equation, by supposing even that this equation contains a term in-
dependent of the principal variable, and which is any function whatever of two other
variables; whence it follows that, when a proposed equation withstands this method,
we can be assured that its complete integral is impossible in finite terms, by having
regard only to the sole variables of the equation. Now, the remark of which I have
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spoken above has made me see that, in this case, the integral is possible in finite terms,
by means of definite integrals taken with respect to a new variable which it is necessary
necessarily then to introduce into the calculation. We will see after this that these forms
of integrals are of the same use in the solution of the problems as the known forms; I
give in order to obtain them a method which extends to a great number of cases, and
especially to many important physical questions, such as the movement of the vibrating
strings in a medium resistant as the speed, the propagation of the sound in a plane, etc.,
of which we have been able to find yet only some particular solutions.

By transporting to the infinitely small differences the remarks that I make on a
particular equation in partial finite differences, I succeed in assuring myself by an in-
contestable manner that, in the problem of the vibrating strings, we can admit some
discontinuous functions, provided that none of the angles formed by two contiguous
sides of the initial figure of the string is finite; whence it appears to me that these
functions can be generally employed in all the problems which are related to partial
differences, provided that they can subsist with the differential equations and with the
conditions of the problem; thus, the only condition which is necessary in the determi-
nation of the arbitrary functions of a proposed equation in partial differences of order
n is that it have no jump point between two consecutive values of a difference of these
functions, smaller than the n™ difference, and, consequently, that, in the curves by
means of which we represent these arbitrary functions, there is no jump point between
two consecutive tangents, if, as in the problem of the vibrating strings, the differential
equation is of the second order, or that it have no jump point between to consecutive 0s-
culating radii, if the equation is of the third order, etc., that which is conformed to that
which as Mr. le marquis de Condorcet has found, by another method, in the Mémoires
de I’Académie for the year 1771, pages 70 and 71. But it is essential to observe that,
if the integral contains the differences of the arbitrary functions, we must consider the
most elevated differences as the true arbitrary functions of the integral, and to apply
the preceding rule only to these differences. This manner of illuminating the delicate
points of the theory of infinitely small differences by that of the finite differences is,
if I do not deceive myself, the most proper to realize this object, and it seems to me
that, after the theory that I exhibit, there must remain no doubt on the use of discontin-
uous functions in the integral Calculus with the partial differences. Finally, I end this
Memoir with the consideration of equations linear in the partial differences, in finite
parts and in infinitely small parts, and by some theorems on the reduction into series
of the functions in two variables. All these researches being only the expansion of a
very simple consideration on the nature of generating functions, I dare flatter myself
that the analysis of which I have made use could merit, by its generality, the attention
of the Geometers.

1I.
On the series in one variable.

Let y,. be any function whatever of x; if we form the infinite series
Yo + Y1t + yat? 4+ y3t® + - 4 yat® 4 Yo tTT 4+ 4 oo t™,

and if we name u the sum of this series, or, what returns to the same, the function of



which the expansion forms this series, this function will be that which I name generat-
ing function of the variable y,..

A generating function of any variable y, is thus generally a function of ¢, which,
expanded according to the powers of ¢, has this variable y, for the coefficient of ¢*;
and, reciprocally, the corresponding variable of a generating function is the coefficient
of ¢t* in the expansion of this function according to the powers of ¢. It follows from
these definitions that, v being the generating function of ¥, that of y,_, will be ut";
because it is clear that the coefficient of ¢* in ut” is equal to the one of t*~" in u, and
consequently equal to Y.

The coefficient of ¢* in u (% — 1) is evidently equal to y,+1 — Yg, O to Ay,
A being the characteristic of finite differences; we will have therefore the generating
function of the finite difference of one quantity by multiplying by % — 1 the generating
function of the quantity itself; the generating function of A2y, is thus u (% — 1) 2, and,
generally, that of Ay, is u (+ —1)"; whence we can conclude that the generating

function of Aly,_, is ut” (+ —1)".
Similarly, the coefficient of y” in
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is
Yz + bYzt1 + CYzt2 + €Ypys + -+ QWaigns

by naming therefore Vy, this quantity, its generating function will be

u<a+b+c+e+-~-+q>
t 12 t3 tn
If we name V2y, the quantity
aVye +bVyei1 + cVypyo +eVyeisz + -+ qVain;
V3y, the quantity
aV?ye + 0V %Y1+ Vi 4+ ¢V i

and thus in sequence, their corresponding generating functions will be

2
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and, generally, the generating function of A’y, will be
chpepe 9y

u a —_— —_— —_— ... —_— .

t 23 )’
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hence the generating function of A*V*y, . will be

ut” (a+b+c+...+q)s (11>1
t 2 tn t ’

We can generalize again the preceding theorems, by supposing that Vy, repre-
sents any linear function of ¥, Yz 41, Yzr2, - - - ; that V2y, represents a new function
in which Vy, enters in the same manner as 1/,, in Vy,; that V3y,, represents a function
of V2ym similar to that of Vy, in y,, and thus in sequence; because, u being the gen-
erating function of v, if we name us that of Vy,, us?, us®, ... will be the generating
functions of V2y,, V>y,,.... By multiplying therefore the function u by the succes-
sive powers of s, we will have the generating functions of the products of y, by the
corresponding powers of V, V being at no point a quantity, but a characteristic; and
this will be again true by supposing these powers fractional and even incommensurates.

s being any function whatever of 1, if we expand s* according to the powers of *,
and if we designate by t% any term of this expansion, the coefficient of ¢* in f,f will
be Ky,+m; we will have therefore the coefficient of ¢* in us®, or, what comes to the
same, we will have V?y,: 1 ° by substituting, into s, y/,, in place of ;2 ° by expanding
that which s’ then becomes, according to the powers of y,, and by adding to , in each
term, the exponent of the power of 3, that is by writing y,, in place of (), yz+1 in
place of (y;)!, y.12 in place of (y,)?, and thus in sequence.

If, instead of expanding s* according to the powers of %, we expand it according to
the powers of 2 — 1, and if we designate by K (1 — 1)™ any term of this expansion,
the coefficient of ¢* in Ku (3 — 1) will be KA™y,. We will have therefore Viy,:
1° by substituting into s, Ay, in place of % — 1, or, what comes to the same, 1 + Ay,
in place of %; 2° by expanding that which s° then becomes according to the powers
of Ay,, and by applying to the characteristic /A the exponents of the powers of Ay,,
that is by writing A%, or y, in place of (Ay,)°, A%y, in place of (Ay,)?, and thus
in sequence.

In general, if we consider s as a function of 7, r being a function of %, such that
the coefficient of ¢* in ur is [y,, we will have V*y, by substituting, into s, Ly, in
place of r; by developing next that which s’ then becomes according to the powers of
Oy, and by applying to the characteristic [ the exponents of the powers of [y, that
is, by writing [(1%,,, or y, in place of ((y,)°, 0%y, in place of ((Jy,)?, and thus of the
rest. We will have therefore the values of V., V2y,,. . .by some simple expansions of
algebraic functions.

Let z be the generating function of X%y, ¥ being the characteristic of finite inte-

grals; we will have, by that which precedes, z (3 — 1)" for the generating function of
Y, but this function must, by having regard only for the positive or null powers of ¢,
be reduced to u. We will have therefore

! 1i W4 B e L E
A =ut+—-—+5+z++ =
t t 2 3 i’
whence we deduce
ut' + At '+ Bt 24+ Ot -+ F
(1—1) ’




A,B,C,..., F being the i arbitrary constants which the i successive integrations of
Yz introduce. By setting aside these constants, the generating function of 'y, will
be u (% — 1) ~'; we will have therefore the generating function of Yy, by changing i
into —7 in the generating function of A'y,; and reciprocally, we will have the variable

corresponding to the function w (% — 1)1, in which we suppose ¢ negative, by chang-
ing ¢ into —i in A"y, and by supposing that the negative differences represent some
integrals; but, if we have regard to the arbitrary constants, it is necessary, in passing
from the positive powers to the negative powers of % — 1, to increase u by a number
of terms % + g + % + - - - equal to the exponent of the negative power of % — 1. We
see thence how the generating functions are formed from the law of the correspond-
ing variables, and reciprocally, in what manner these variables are deduced from their

generating functions. We apply now these results to the theory of series.

111
On the interpolation of the series in one variable, and on the integration
of linear differential equations.

All the theory of the interpolation of series consists in determining, whatever be
1, the value of y,,; by a function of y, and from the terms which precede or which
follow 3,.. For this, we must observe that 1/, ; is equal to the coefficient of t**% in the
expansion of u, and, consequently, equal to the coefficient of ¢* in the expansion of 37;
now we have

;=u<1+1—1>i
1+i(1_1)+i(ilf21) <1_1>2+W<1_1>3+---

Moreover, the coefficient of ¢* in the expansion of w is ¥, ; this coefficient in the expan-

=Uu

sion of u (% — 1) is Ay, ; in the expansion of u (% — 1)2, it is equal to Azym, and thus

in sequence; we will have therefore, by passing again from the generating functions to
the corresponding variables,
i(i—1)

Yoti = Yz + 10Yz + TAngg +

i(i —1)(i —2) A3

123 Yoot oo

This equation, holding whatever be ¢, will serve to interpolate the series of which the

differences of the terms go by decreasing.
All the ways of expanding the power

interpolate the series; let, for example,

1

7 will give as many different methods to

1 «
=14 —;
t +tr

by expanding tlﬁ-, according to the powers of «, in a manner of the beautiful theorem of
Mr. de la Grange (see the Mémoires de I’Académie, year 1777, page 115), we will find



easily

(i +2r — 1 (i + 3r — 1)(i + 3r — 2
gzu 1+ia+l(2+ r ) o i(i+3r Y@+ 3r )a3

i 12 ¢ 1.2.3
(i +4r—1)(GE+4r—2)(i+4r—3) 4,
+ 1234 @t

Now, « being equal to " (% — 1) , the coefficient of t* in the expansion of u« is, by the
preceding article, Ay, _,; this same coefficient in the expansion of ua? is A%yy_op,
and thus in sequence. We will have therefore

i(i+2r—1) i(i+3r—1)(i+ 3r —2)

J— ; 2 3
Yzx+i Yz + ZAy:cfr + 1.9 A Yx—2r + 123 A Yz—3r
(i +4r—1)(G+4r—2)(i+4r-3) 4,
YaN Ay e
N 1.2.34 Yomtr +
Iv.

Here is presently a general method of interpolation which has the advantage of
being applicable, not only to the series of which the differences of the terms conclude
by being null, but further to the series of which the last ratio of the terms is that of any
recurrent series.

We suppose first that we have

and we seek the value of ti in z.

It is clear that t% is equal to the coefficient of #° in the expansion of the fraction

—L7: if we multiply the numerator and the denominator of this fraction by 1 — 0¢, we

[2]
1-¢£
1-6t

will have this here [EIETmEEE The equation

1 ? 1
t(t_l) =z gives g+t:2+z,

that which changes the preceding fraction into the following (1_19’)72(%_29; now we have
1 B 1 . 20 . 2262 n 2363 n
1-0)2—20 (1-6)2 (1-6)* (1-6)°5 (1-0)3

Moreover, the coefficient of 8" in the expansion of ﬁ is equal to 1'23” %,
provided that we suppose § = 0 after the differentiations, that which gives for this

S(SH)(‘;E_Q;:_'_'?EHPI); whence it follows that the coefficient of 6% is: 1

o i(i1)(i42)
2 - 1.2.;

°

coefficient

i + 1 in the expansion of (IJG)Q; in the expansion of ﬁ; 3°



(i—1)i(i+1)(i+2)(i+3)
1.2.3.4.5

name Z the coefficient of §° in the expansion of the fraction m, we will have

. . 2 .
in the expansion of (1279)6, and thus the rest. Therefore, if we

i(i +1)(i+ 2) -1+ 1D)(E+2)(i+3) .2

Z=itld T 2 1.2.3.4.5
L= - Dil+ D243+ 5,
1.234.5.6.7
or
iy G+D[GE+1)2—=1 G+D[E+1)%=1][(+1)* —4]
Z=itl+ 1.2.3 at 1.2.3.4.5 2
LD - )P 4G+ D2 9]
1234567

If we name next Z’ the coefficient of #° in the expansion of (1_9)#2_29, we will
have Z’, by changing, in Z, i into 7 — 1, this which gives
W2 —1) (2 —1)(2—4) , (-1 -2 —9) 4

123 ~° 12345 - ° 1.2.3.45.6.7 S

Z' =i+

We will have thus Z — tZ’ for the coefficient of 6% in the expansion of the fraction

(1_19’)72“_29; this will be, consequently, the expression of ti, therefore

u

This put, the coefficient of t* in t% iS Y, +4; this same coefficient, in any term of uZ,

such as Kuz" or, that which comes to the same, Kut" (% — 1)2r is, by article II, equal
to KA%"y, . in any term of utZ’, such as Kutz", this coefficient is K /A%y, _,_1.
We will have therefore, by passing again from the generating functions in the corre-
sponding variables,
. i+ 1)[(i+ 1) -1
Yars =G+ 1y + SFDOHD =Y p2
1.2.3
(i+ D[ +1)* — 1[(s +1)* — 4]
1.2.3.4.5
, i(i2—1)
— Yyl — ————— DNy,
Weml ™ Ty g 3 a2
D)
1.2.3.4.5
We can vary again the preceding form of y,,; for that, let Z” be that which Z’
becomes when we change ¢ into ¢ — 1 and, consequently, that which Z becomes when
we change i into i — 2; the equation + = Z — tZ’ will give 72 = Z' — tZ", hence
ti = ZT/ — Z". By adding these two values of ti and taking the half of their sum we
will have

- Ay gt

1 1, 1 1 1
=z -7+ Z(14t) (- —1) 2,
272 +2(+)(t )



now we have

1 1 1 i(i+1)(i+2)
/A — 1
Q{Jr ey 7
1 (i—2)(i—1)
Zli—-1
2{ T3 T
i? i?(i2 — 1) i2(i2 — 1)(i% — 4)
_1 o 2 3 .
+12 2+ 1234 © " 123456
hence ) )
u 2 /1 22 1) , (1
—=u|l t{-— 2= —1
T +12( >+ 1.2.34 <t >
9. . 6
n 12(1271)(12—4)753 171 .
1.2.3.45.6 ¢
i 1 -1 (1 8
lu@ 4t |1+t -1
Foull 1y -1 953 (t )

(i2—-1)(i2—4) , (1 5
Z 1 ..
T 2345 ¢ +

whence we conclude, by article II, by passing again from the generating functions to
the corresponding variables,

i2(i2 — 1)

-2
1
= — N3y,
Yorl = Yo+ 755 We1 537

202 — 1)(i% — 4)
NSy,
123456 Yo—s +

A4yx—2

2
=+ A(yz +yz 1) + 77& (ymfl + y172)

2 1.2.3
(Z — 1)( )AS(yzfQ + Yr—3)

* 5 1.2.3.4.5

This formula returns to that which Newton has given in the small work entitled Metho-
dus differentialis, in order to interpolate between an odd number of equidistant quan-
tities; in this case, y, designates the quantity of the mean and ¢ is the distance of this
quantity to that which we seek, which, consequently, is y, 1, unity being supposed the
common interval of the given quantities.

By differentiating in finite differences the preceding formula with respect to ¢, we



will have

1 i+ 1
Yot+itl — Yoti :iA(yz + Yoo1) + ( 12 )

(i—Dili+1DE+2)1

A?’(ym71 + yzf2)

A (Yp—z + Yoz) + -

1.2.34 2
o (2 +1)(i +1)i 1
%+ 1)~ A2y, + LT IUF L na
D)5 e 123 27 Y2
2+ 1)(i+2)(i +1)i(i — 1)1 g
NSy
* 1.2.345 g5 Vo3t
Let Y41 — Yo = L and i = =51, we will have
1 211,
Yppogt :i(y; + Y1) + ﬁiﬁ (Y1 + Yu2)

(s2 —1)(s%2-9)
2468

/

1
+ A Woo +¥hg)

s s(s2 —1)
VAT N3
T3 oG
s(s2 = 1)(s*> - 9)
2.4.6.8.10

This formula returns to that which Newton has given in the small work cited, in order to
interpolate between an even number of equidistant quantities; 3/, expresses the second
of the two mean quantities, and 551 expresses its distance to that which we seek and

which, consequently, is y; P unity representing the common interval of the given
2

/
Yzr—2

Asy;_g + PN

quantities.
V.
We suppose generally
b ¢ e P q
(a) Z:a+¥+t72+t73+”.+t"*1+t7"7
we will have
1 z—a b c P
tn q qt qt2 qtn—l’
that which gives
1 z-a b c P
tntl gt qtz  qt3 qt™’

by eliminating tin from the second member of this equation, by means of the proposed
(a), we will have

1 p(z—a) pb+q(z—a)

Al T PE 2t

This expression of tn% contains only some powers of % of an order inferior to n, and,
by continuing to eliminate thus the power ﬁ, in measure as it is presented, it is clear

10



that we will arrive to an expression of 7> which will contain only some powers of %
less than n, and which, consequently, will have this form

1 1 1 1 .. 1
i ST A I Ny C) B { ) BT Z/(n=1)
t th +zf2 +t3 + th”—l ’

Z, 7MW, 7@ . Z(=1 being some rational and entire functions of z, of which the
first does not surpass the degree %, the second does not surpass the degree % — 1, the
third the degree ;- — 2, and so the rest.

This manner of determining ;v 1s very laborious when i is a little large; it would
lead besides with difficulty to the general expression of this quantity; we could attain it
directly by the following method.

bemg equal to the coefficient of §? in the expansion of the fraction - 9 , we will

multlply the numerator and the denominator of this fraction by
(a—2)0" +00" " + "%+ £ ph+q

and, by substituting into the numerator in place of z its value a + % +55 4+, we will
have

bt (1= §) + o (1= ) +e0m 3 (1= %)+ +a(1- %)
(1—=2) (am +b6m—1 +cOm2 + e 3+ +pf+q—26m)

The numerator of this fraction is divisible by a — %; we can therefore, by making the
division, put it under this form

WO 40" e -+ g
0
+f(c¢9"_2 +et" P+ 4 ph+q)
92
+t2(69”3 <+ pd+q)
qonfl
tn—l

A
) af™ + 00" 4 "2 €03 4 - 4 ph + q — 20"

The research on the coefficient of §7 in the expansion of this fraction is reduced thus to
determine, whatever be r, the coefficient of §” in the expansion of the fraction

1
af™ + b0l + chn=2 4 3 + ... + pl + q — 20"

For this, we will consider generally the fraction £, P and () being some rational and
entire functions of 6, the first being of an inferior order to that of the second. We
suppose that ) has a factor § — « raised to a power s and we make @) = ( ) SR; we
can always, as we know, decompose the fraction £ o) into two others =)y )g + , Aand

11



B being some rational and entire functions of 6, the first of order s — 1 and the second
of an order inferior to the one of R; we will have therefore

A B P

@—ar R @—arR’
that which gives
P B(f-a«)°
R R '

If we consider A, B, P and R as some rational and entire functions of § — «, A
will be a function of order s — 1, and, consequently, it will be equal to the expansion
of % in a series ordered with respect to the powers of § — «, provided that we stop at
the power s — 1.

Let therefore

A=

F=yFTunl-—a)+p@—a)+-,
we will have

Ay Y1 Y2
@—ar @—ar (@_ar i (@_ap2 "

by rejecting the positive or null powers of 6 — «; ﬁ will be consequently equal to
the coefficient of ¢*~! in the expansion of

y+yit +yat® -
0—a—t

Now, if we name P’ and R’ that which P and R become when we change 6 — « into ¢,
or, that which returns to the same, 6 into ¢ + «, we will have

/

ﬁ:y+y1t+y2t2+~-~;

hence, ﬁ will be equal to the coefficient of t5—1 in the expansion of 1?/(967/@[4)’

and, consequently, it will be equal to

1 as—l P!
123...(s—1)0ts ' R(0—a—1t)

provided that we suppose ¢ = 0 after the differentiations. Now, the coefficient of 8" in
as—l P’

R,(%/a_t) being equal to — R,(%;),,H , this same coefficient in

will be
1 as—l P/
1.23...(s—1) ot~ R'(a+ )+’
t being supposed null after the differentiations. This last quantity will be therefore the
coefficient of #" in the expansion of ﬁ; now, if we restore, in P’ and R’, 6 — o in
place of ¢, that which changes them into P and R, we will have

asfl Pl _ 6571 P
T R(t+a)t1  00s—1 Rer+1

12
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1.2.3...(s—1) 9ts—1 R'(0—a—t)



provided that we suppose § = «, after the differentiations in the second member of

. . s—1 . . . ..
this equation; — 1‘2.3“1.(571) 5}(‘95,1 R(ffﬂ will be therefore, with this condition, the co-

efficient of " in the expansion of the fraction
It follows thence that, if we suppose

A
(0—a)s "

"

Q=a(0—a) O -a)"@-a")"...,

the coefficient of 6" in the expansion of the fraction g will be

B 1 o1 P
1.23...(s=1) 905~ afr+1(0 — /)" (0 — )" - -7
1 o' —1 P
C1.23...(s' = 1) 0051 af (0 — )5 (0 — o) -
1 as”fl

123, (s —1) 0605 L abr (0 — a)* (0 — /)" -+’

by making, after the differentiation, § = « in the first term, # = o’ in the second term,
# = o' in the third term, and thus in sequence. This put, let

V=ab"+00"" "% 4 4 ph+q,
and we suppose that, by putting this quantity under the form of a product, we have
V=all—-a)l—a)0—a") - ;

by expanding the fraction ﬁ in a series ordered with respect to the powers of z,

we will have o

1 N 2™ N 2262n N Zdedn N

Vo2 V3 V4 ’
and the coefficient of 6" in the expansion of the fraction % will be, by that which
precedes, equal to

1
9r+1(9 _ a’)s((? _ a//)s .
1
s—1
_ 1 O ) e a0 — oy
1.2.3...(s = 1)a® 0651 1
I —ar@ )
+ -

provided that, after the differentiations, we suppose 6 = « in the first term, § = « in

the second term, 8 = o’ in the third term, etc. Let Zﬁs_l) be that which this quantity
1

becomes then, the coefficient of 6% in the expansion of the fraction Vo will be

204+ 20 24 73, 2 z8 B

13



we will have therefore, for the coefﬁcient of 0% in the expansion of the fraction (A) and,
consequently, for the expression of 1 7

(1)

; _bZz(OnJrl + bZZZ 2n+1 + b222(23n+1 + bZSZZ )4n+1 +-

+ ch(On+2 + c,zZ.(l)Qn_|r2 + c,z2Z(2)3n_~_2 +cz

K3

3Z<3)4n+2 +-

+ eZ.(_)TH_3 + ezZ( )2n+3 + ezQZ(Q)gn_s_3 + ez3Z(3)4n+3 +-

?
_|_...

)

T3t cz‘SZ(3)

ZO v ezZYy e

1
T3 +eZ0 ot ez B+ e 22 et

2

2)

1 0)
+tn7—1(qZ( n+1 -FQZZZ 2"+1+qz2Zf a1 )

Presently, if we designate by Vy,, the quantity

Yz + bYzt1 + Yzt + -+ QYptn;

by V2y, the quantity

aVys +bVyst1 + cVyspo + -+ qVYzpn;

by V3y, the quantity

av2ym + bv2ym+l + Cv2y1+2 +-- qv2y1+n;

ans1 T

1 { eZi(E)n+1 + eZZi(i)ZnJrl + eZQZi(E)BnJrl + 623Z1(3)4n+1 e
+

——

and thus in sequence it is clear, by article II, that the coefficient of ¢* in the expansion

Of UZ

; by multiplying therefore the preceding equation by u, and by

con51der1ng within each term of it only the coefficient of ¢*, that is by passing again

14



from the generating functions to the corresponding variables, we will have

Yr+1 =

(B)

ym(bZz(On_~_1 + chon+2 + eZz( T qzﬁo))
+ Vya (b Z(12n+1 +cz)Y) “ont2 T ez “opys T qu(l)n)
+ V2, (b2 “3nt+1 T ez’ “3nt2 t ez —3n+3 T +qZ2%),)
4o
+ y$+1(CZi(8)n+1 + eZz(O)nJrz +oeet qu'(B)1)
+ Vyxﬂ(czi(gnﬂ + €Z£7)2n+2 +o gz )
e
t+yara(Z g+t qu(’) )
+ Vy:z:+2(eZ¢(i)2n+1 +ee Tt qu( )71 2)
4o

0 1
+ qya:+n—1ZZ-(,)n+1 + qux—&-n—lzi(f)gnJrl + qv2y9c+n—1Zi—3n+1 +---

This formula will serve to interpolate the series of which the final ratio of the terms
is that of a recurrent series; because it is clear that, in this case, Vy,, ngx, V3yw,

..will always go by diminishing and will end by being null in the infinite.

If one of thes

e quantities is null, for example, if we have V"y, = 0, the preceding
formula will give the general expression of y, which satisfies this equation. In order to

show this, we suppose first Vy; = 0, or, that which comes to the same,

if we make in thi

0 =ay; +byit1 + cYita + -+ qWitn;

s case z = 0 in the preceding formula, it will become

yO(bZz(On—i-l + Zz(on-l-Q+eZz(On-|-3+ +qu(0))

Yi =
0) 0
+y1(c Z7,( nt1 T 621( n2 Tt qu'(—)1)
0) 0
+ya(e Zz( nt1 Tt qu(—)Q)
0
+ qyw-ﬁ-n—lZi(f)nﬂ'
Yo, Y1, Y2, - - -, Yn—1 are the first n values of y;; these are the n arbitrary constants that

the integration of equation Vy; = 0 introduces.

If we have V2y; = 0, the general formula (B) will give, by supposing again = = 0,

Yi = (bZl( )n+1 + cZZ( )n+2 +-+ qZ-(O))
+ Vo (b2 )2n+l +ezt )2n+2 +o g2,
+ (2 e+ quO’ )
+ Vi (CZi—)2n+1 +ooe Tt qu(l)n-H)
4
+4Z° Y1 + 420 VY,

15



Yo, VYo, Y1, VY1, - -+, Yn—1, VYn—1 being the 2n arbitrary constants which the inte-
gration of the equation V2y; = 0 introduces. We will have in the same manner the
value of y; in the case of V3yi =0, V4yi = 0,.. ., and we see thus the analogy which
exists between interpolation of series and the integration of equations linear in the finite
differences.

VL

Let y, =y, + ¥/, and we suppose that u’ is the generating function of y/, and u”
of y//; we will have
u=u+u".

Let further u'2® = X or v = 2 if we designate by X, 1, the coefficient of £” in
the expansion of A\, we will have, by article II,

Koti = vsng;
presently, we have

1 tnS
z5 (a4 bt et 2 4 4 q)s

Now the coefficient of t*1%, in the expansion of the second member of this equation, is
equal to the one of #*T¢~" in the expansion of 0 and, by the

1
9ﬂ,+b9n—1+09n—2+__,+q)s )
preceding article, this last coefficient is equal to Z ii;i)ns; therefore the coefficient of

t*+% in the expansion of Z%, will be
-1 -1 -1 +1
Xw+i—nsZéS ) + Xw-ﬁ-i—ns—lzfs ) +--+ XOZ:Eiif)ns or Zsziiif)nsfr’
the integral being taken relatively to r and from r» = 0 to r = = + ¢ — ns; this integral
will be the expression of ¥ ;.
In the present case, it is easy to reduce it to some integrals relative to ¢, because
it results from the expression which we have given of Zi(s_l) in the preceding article,

as that of Zi:__il_)ns_r is reducible to some terms of this form K 3,r*, so that the term

corresponding to ZXTZ;:-?M?T willbe KX 3"r*X,., K being a function of z+i—ns;
now, if we designate by the characteristic Y’ the integral relative to ¢, we will have

KYB" "X, = KE’B””'H_”S (x +17— ’nS)MXz+ifns»

provided that we terminate the integral relative to r, when r equals  + ¢ — ns; we
will reduce thus the integral £.X, 2~

oti_ns_r t0 some integrals uniquely relative to the

16



variable 7. This put, if in formula (B) we make x = 0 and V?®y; = 0, it will become

yO(bZz(E)n_‘_l + CZ§8)7L+2 4.4+ qZZ(O))
+ vyO(bZi(i)Qn_"_l + CZZ,(PQTLJ’_2 R qu(i)n)
4.
+ V02 ez 2B )

y;+ZXrZ(6_1) =

1—ns—r

(20 4+ qZ)
F VI (2 D aZ )

Jr e
0 1 s—1 _
+ qu(_)n_Hynfl + qZ,*(_)Qn_Hvynfl + -+ qu(isnl_lvs 1yn717

Y0, VYo, --- Vo, y1, .- Vi, .. VS, 1, Vyn_1, ... VS 1y, 1 being the
sn arbitraries of the integral of the equation

Viy; =0 or Vy + Vy = 0;
now, V*y, being equal to X, this equation becomes
0=V + X..

We will have therefore, by the preceding formula, the integral of all the equations linear
in the finite differences of which the coefficients are constants, in the case where they
have a last term which is a function of 7.

VIL

We can give to the expression of t% an infinity of other forms among which there is
found what can be utile in many cases. Here is how we can attain it.
For this, we suppose that, instead of giving, as above, to % this form

1 1 1 1
iy ST A SO N () DR R/ { (g )
t + t + 2 teet tn—1 ’

we give it this one

1 1 1 ? 1 g
ti:Z+<t_1>Z(1)+<t_1> Z(2)+...+(t_1) AR

the question is reduced to determining Z, Z(V, Z(2) ..
We put first the equation

p q
tn— 1 tn

L
Z:a/ -_— —_— P
e

17



under this form

2 n—1 n
1 1 1 1
=ad+b (=1 (=1 . (= -1

and one will have
aza/—b'—&—c’—-nqip’ :I:q’,

the upper signs having place if n is even and the lower signs if n is odd. We will
multiply next, as previously, the numerator and the denominator of the fraction

by

1
]
1-%

(a—2)0" + 00" "1 + 0"+ 4 pl +q,

by observing to substitute into the numerator: 1 ° in place of z,

1 1 2
a/+b/<t_1>+cl(t_1) _|_7

2° in place of af™ + b0" ! + "2 + - .. the quantity

1 1 2
T N | =
a + (t >+C(t ) +

If moreover we make, for brevity, % —1= % we will have

971

b/9n—1(1—9—g)+c/9n—2 {(1_9)2_%}+'“+q[(1_9)n_%].

i

(1—29) (a0 + b6 + =2 + -+ pf + g — 26™)

now we have
-0l
t t/
By dividing therefore the numerator of the preceding fraction by this quantity, it will
be reduced to this one

0 L
b/en—l 4 c/en—Z (1 —0 4 t/) + e/en—S |:(1 _ 9)2 + (1 _ 9>P + t/2:| + ...

n— n—e n— 92
—i—q[(l—&) Y+(1-0) 2§+(1—9) 3t,2+~--]

af™ + b1 + cOn=2 4+ .- 4+ ph + g — 207

18



whence, that which returns to the same, to

2 n—1
b/gn—l 4 C/Qn_l 1 —1)+ e/an—l 1 -1 Ly qan—l 1 -1
0 0 0
+n_1 e (1) et 1—1n_2
v |“T N\ 7\ 9
n— n—3
+ : ¢ +-+q Loy
12 0
qen—l
tn—1

af™ + b1 + cfn=2 4+ -+ ph + g — 207

Thence is easy to conclude that, if we conserve to Zf('sfl) the same signification that we
have given to it in article V and if we consider that, by designating by g; the coefficient
of #% in the expansion of any function of 6, this same coefficient in the expansion of
this function multiplied by (% — 1)# will be, by article II, A*q;; we will have

1
= S AR YA NN LY A N

—i—C/AZZ(O)nJrl—I—CZAZ( )2n+1+022AZ(2) 4+

i 3n+1
+ 6/A2Zi(g)n+1 te zAZZ( )2n+1 +e'22N?Z 52)3n+1 +o
+ A1 20 rear Tz, Az

) |- 201+ 2B+
+ P +e AZZ(O)n-i-l +e ZAZ(lQn-l—l +-
+ . e

1 { € Zz( )n+1 te ZZ(I)znﬂ +- }

2512
_|_ v

q 0 1)

+ pn—1 (Zz( )71+1 + ZZ( —2n+1 +- )

Presently, it is clear, by article II, that the coefficient of ¢t* in the expansion of the
function %7~ is A#V?y,; the preceding equation will give therefore, by multiplying it

19



by u and by passing again from the generating functions to the corresponding variables,

Yati :yz(b/Zi(o)nH tc AZZ n+1 T /AQZz(OnH +- A IZz(O)n—i-l)
+Vy, (b'Z 1(1)2n+1 +CAZ(12n+1 +e'A? Z(12n+1 + o+ qA" 12(1)211-‘,—1)
+ V2, (2 z()3n+1+ IAZ(23n+1+ ¢N*Z i—3n+1+ “+ A" 1Z )3n+1)
4.
+ Ay, (C’Z( ) L Fe AZl(On_H + o gA™T 2ZZ(O)’I’L+1)
+AVy, (¢ Z(1)2n+1 + ’AZ<12n+1 +o g2z, )

+ AV, (¢ Zz(2)3n+l te AZi—?m+1 o+ gA QZ )3n+1)
+ .

+ Azy ( ZZ(O)’I’L+1 +- qA"™" 3Z7,(O)n+1)

+ Asz ( Z(1)2n+1 =+ An 321(1)2n+1)

Jr e

Zz( )n+1An 1yz+qZ 2n+1An 1Vym+qZ( a1 "Wy +
VIII.

We suppose, in the preceding formula, x and ¢ infinitely great, in a way that we

have
;= and x = “ .
== - 3
d.’El d.’El
Yz+; becomes a function of w + x1, which we will designate by ¢(ww + x1). We
Suppose moreover

by C2 g2

a1 = ag, blzdxla Cl:dl‘%7 RN q:dx»ila

the equation

oot (o) v (P oig(ton)
= ay 1 9 C1 0 q 9

will give, for 6, n roots of this form

=1+ fdzy, 0=1+ fidzy, 0=1+ fodzy, ...;
these will be the quantities which we have named «, o/,a/”,. . . in the expression Zr(s_l)
of article V, and the values of f, f1, fa, ..., will be given by the n roots of the equation

0=as—bof +cof>+-- £ qf"

Now, if we make 6 = 1 + hdx1, we will have

i1
0i ~ (14 hdzy)’’

20



the hyperbolic logarithm of this last quantity is

—ilog(1 + hdz,) = —ihdz, = —ha,

whence we deduce % = e "*1 ¢ being here the number of which the hyperbolic

logarithm is unity; we have besides

ba o )
a=a—b1+c q= a2 dz, + 2 + da”

and this value of a is reduced to the term £ 2-, because it is infinitely greater than
1

the others; the expression of Zﬁs_l) of article V will give therefore, by changing r into
i—1,

e—hxl
(= Fe(h— o)
efhzl
(s-1) _ da, A I vy v
Zion = 1.2.3--- (s = 1)(£q2)® Ohs—1 (h=1) (hfh{f) ’
e 1
RCEV IR U s

the difference 9°~! being taken by making h vary only and by substituting, after the
differentiations, f in place of A in the first term, f; in place of A in the second term,
and thus in sequence. We name X *~1dz; the preceding quantity, we will have, to the
infinitely small nearly,

25" = 2070 = X6 Vday;

moreover we have y, = ¢(w), and the characteristic A of the finite differences must
be changed here into the characteristic 0 of the infinitely small differences, so that the
equation

Vym = ayy + byac+1 + CYpy2 0

or, that which returns to the same, this here

b c
Ve = as + Ay + -5 A%y + -
dzy dzy

becomes, by changing dz; into dw,

do(w) d*¢(w) d*p(w)
dww T dwo? te dw?

dn
Vi = ay + by ¢(@).

+...+q2
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the expression of y, 4, found in the preceding article, will become therefore

ax (0 d2x(0)
d(w + 11) =) () (ng<0> e e+ )
dx 2x @
by X (M) .
+ Vo(w) ( 2 +c2 ds + e 2 >
dx @ d2x(?)
2 by X (2) e
+ Vop(w) < 2 +c2 dz, + e a2
X (0)
+ Lb(w) ch(O) + 62d + -
dw dzry
x (1)
+W<02X(1)+62dd +>
v X1
© 2
X (2)
L V@) (xS
dwo dzy
+ .
d2
dd;(f) (e2X© 4..0)
d2
+ VU g x00 4
+ .
dnfl m—1
+ a2 2A) 50 4 g2 dwvf(lw)x(l)
dnfl 2
+ quvi(Zsl(?ﬂ)X(g) +
wh™

This formula will serve to interpolate the series, of which the last ratio of the terms is
that of a linear equation in the infinitely small differences of which the coefficients are
constants.

If we have 16()
Vo(w@) = axd(w) + b=,
we will have
f=5
bo

and

Vé(w) = bye /™ 7d[€ﬂ;ﬁ(w)] ;

the expression of X (*—1) becomes, in this particular case,

1
123, (s —1)b3

ms—le—farl :
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we will have therefore

r1 d[ef " p(w 2? d*[ef = ¢(w

ba dw b2 dwo?

By supposing bs = 1 and f = 0, consequently a2 = 0, we will have the known formula
of Taylor.

Formula (C) will be terminated anytime we have V*¢(w) = 0; if, for example,
V¢(w) = 0, we will have

dX(O) dn—lX(O)
(]5(’(7) + .’L’l) =¢(w) (bQX(O) + c2 dIl R q2 d;(:n1>
1
do(w) dXx(© dn—2x©)
) x (0 .. -~
+ gy C2 + e2 dry + + q2 dx’f‘Q
+ .-
n—1
n q2X<°)d P(w) .
doon—1 ’

this will be the integral of the equation 0 = V¢(w + 1) or, that which returns to the
same, of this

dc{)(w+x1)+ d2¢(w+w1)+.“+ d"¢(w + x1)

0= b
azp(w + 1) + be = 2 pre Q2 e ;
o(w), dqg(;)’ dz(z;(?), R dz;f_(?) being the n arbitrary constants which the inte-

gration introduces. We will have, by the same formula, the integrals of the equations
V2p(w +x1) =0, V3¢(w+ 1) =0,

If we make
d(w +x1) = Y121 + Yoy

and if we suppose V®ysx1 = V, V being a given function of x;, we will find easily,
by article VI, that if we change, in the expression of X(S’l), rp into w + x1 — r and,
in V, x7 into r — w, and if we name R that which the first of these two quantities
becomes and S that which the second becomes, we will have yox; = f RS dr, the
integral being taken from r = 0 to r = @ + x1; if we suppose, moreover, in formula
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(©), Vo¢(w + 1) = 0, it will become

dx©
y1$1+/RSd7’ =0 (bQX(O)+02 e +>
1

dx @
+Vy0 <b2X(1)+CQ +)
dxl

dx (=1
+ VETy, (bQX(S_l) + C2— + - )
1
d
+ TZ(CQX(O) +0)
d
+V <d?> (XM 40
d
L pD) <y0) (XG0 1)
dw
dn—lyo © dn—lyo )
+a X0 v (S X
d"yo
s—1 X(s—l)
+ qQV (dw"l )
Yo, %, .oy Vyo, V (%) , ... being the sn arbitrary constants of the integral of the

equation
0=Vp(w+z1) or Viyz1 +V =0;

the preceding formula will serve therefore to integrate all the equations linear in the
infinitely small finite differences, of which the coefficients are constants, when they
have a last term which is a function of z; alone.

IX.
On the transformation of the series.

We see, by that which precedes, with what facility all theory of the recurrent series
results by consideration of generating functions; this consideration can yet serve to
transform, in a more general and more simple manner than by known methods, a series
into another of which the terms follow a known law.

For this, we will consider the series

(D) Yotyrty2+tys+ -+ Yo+ Yer1 + -+ Yoos

and we name, as above, u the sum of the series

Yo + Y1t + yot? + ystd + o F Yut” F yer 1t yoot™,
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it is clear that the coefficient of ¢*, in the expansion of the fraction 11—2, will be equal
t

to the sum of the proposed series (), from the term 7/, to infinity; now, if we multiply
the numerator and the denominator of this fraction by

+htetet L
a C e e — Cl/ —_— —_— —_— ...
tot2 3 ’
the numerator will be divisible by 1 — % and the quotient of the division will be

1
U b—l—c—&—e—i—---—i—;

1
(C+e+...)+t2(e+...)+...:|;
therefore, if we make, for brevity,
a+b+c+e+-- =K,
chye e
a — p— J— e =z
t 2 3 ’

we will have

= — b ...
1_% K2 +ct+et+ -+

U U 1 1
t(c+e+...)+t2(e+...)+...];

by expanding the second member of this equation with respect to the powers of z, we
will have

1
u b+c+e+~~~+¥

(ct+e+ )+1(+ ) + 1+Z+22+23+
ere 2 K K2R3 K* '

Now, the coefficient of ¢*, in any term such as “t‘is , is, by article II, equal to V®y,,;

this coefficient will be therefore, in the preceding quantity, equal to

Yo, Vo, Viya  Vy +)

K+K2+K3+K4

(b+c+e+-~-)(

Yz+1 Vizi1 V2ym+1 V?’ymﬂ
+(C+e+...)< + 2 + 3 + 4 +...
Yz+2 Vzi2 V 2ym+2 V Sya:+2
+(e+...)< + =+ . + ral SRR

this will be the value of the proposed series () from the term y,, to infinity.

If we make « = 0, we will have a new series equal to the proposed, but in which the
terms follow another law; and, if the quantities V.., V2y,, ... go by decreasing, this
new series will be convergent; it will terminate itself anytime that we have V*®y, = 0,
that which will take place when the proposed series will be recurrent; we will have in
this manner the sum of the recurrent series.

The transformation of the series is reduced to determining the integral >y, taken
from z = 0 to z = oo, and all the ways to express this integral will give as many dif-
ferent transformations; that which consists, by that which precedes, in determining the
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coefficient of ¢* in the expansion of 1. For that, let generally z be any function of

and we name Vy, the coefficient of t”” 1n uz; the coefficients of t* in uz?, uz®, uz?, ..

will be V2y,., V3y,, V4 yT, .... This put, we will multiply the numerator and the de—
nominator of the fraction ; by K — z, and we will take K in a way that it will be

equal to z, when we make t equal to 1 in this last quantity; K — z will thus be divisible
by1l—+. Letq+ q Ly d? i i qtg + - - - be the quotient of the division; we will have

u _ug 1+z+z2+z3+
1—% K K K2 K3

uq™ 1+z+22+z3+
Kt K K? K3

Jr
_|_ .
that which gives, by passing from the generating functions to their corresponding vari-
ables,
_We | VY VU
pT :
Vo= TR T RS
q(l)yw+1 q(l)vyw+1 q(l)v2yw+1
K K? K3
(yars  4VYerz 4DV
K K? K3

+

+

the integral 3y, being taken from y, to y..; and, if we make in the preceding equation
x = 0, we will have a new series equal to the proposed and which will be, consequently,
its transformed.

X.
Theorems on the expansion of functions and of their differences in series.

By applying to some particular cases the results which we have given in article II,
we have an infinity of theorems on the expansion of functions in series; we are going
to present here the most remarkable.

. n
1 K2

We have generally
1 n
U ( — 1) =u

tL
now it is clear that the coefficient of ¢*, in the first member of this equation, is the n™
difference of y,, x varying with ¢; because this coefficient in u (f — 1) 1S Ypti — Yz
or ' Ay, by designating by the characteristic LA the finite differences, when x varies
from the quantity ¢; whence it is easy to conclude that this same coefficient in the

. n
expansion of u (f — 1) is ' A”y,. Moreover, if we expand u [(1 + % — 1)1 — 1]

according to the powers of % — 1, the coefficients of ¢ in the expansions of u (3 — 1),
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U (% — 1)2, U (% — 1)3, ... will be, by article I, Ay,, A%y,, A3y,, ...; so that this
coefficient in u [(1 +1-1)" - 1} will be [(1 + Ay,)" — 1], provided that, in the
expansion of this quantity, we apply to the characteristic A the exponents of the powers

of Ay,, and that thus, in place of any power (Ay, )™, we write A™y,; we will have
therefore

(1 ATy, = (14 Aye)' — 1)

If we designate by the characteristic * ¥ the finite integral when z varies from 4,
1 y2m9,. will be clearly equal, by article I, to the coefficient of ¢* in the expansion of

the function u (tl — 1)771, by setting aside here some arbitrary constants which the
integration must introduce; now we have
N 1"
(1 + t) -1

1 —-n
t'l

moreover, the coefficient of ¢% in u (+ — 1)~ is, whatever be m, ¥™y,, by setting

aside some arbitrary constants, and this coefficient in u (% — 1)m is A™y.; we will
have therefore, by always setting aside some arbitrary constants,

2) 'Yy, = (14 Aye)' — 177,

provided that, in the expansion of the second member of this equation, we apply to the
characteristic A the exponents of the powers of Ay, and that we change the negative
differences to integrals; and, as, in this expansion, the integral >y, is encountered,
and as this integral can be counted to contain n arbitrary constants, equation (2) is again
true by having regard to the arbitrary constants.

We can observe here that this equation is deduced from equation (1), by making n
negative and by changing the negative differences to integrals, that is by writing ! X"y,
in place of ! A="y, and ¥y, in place of A~™y,.

Equations (1) and (2) would equally hold if z, instead of varying from unity in Ay,
varied from any quantity c; but then the variation of x in * Ay,, instead of being 7,
would be izo. Indeed, it is clear that, if in y, we make x = %, 1 will vary from w
when z will vary from unity; Ay, will be changed thus into Ay, , the variation of z;
being w, and ' Ay, will be changed into ! Ay.,, the variation of z; being iww. This
put, if we suppose in these equations that the variation of z is infinitely small and equal
to dx in Ay, this difference will be changed into the infinitely small differential dy,;
if, moreover, we make ¢ infinite and idx = «, « being a finite quantity, the variation of
z in ' Ay, will be .. We will have therefore

1Anya: = [(1 + dyzy - 1]"7
Yo = —1 ;
T gy

1ywn

now we have

. . L dyg dys
1 1 v = 1 1 = = _— —_
og(l +dy,)" = ilog(1 +dys) = idy, =idz—= =a—-,
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that which gives
P dyz
(1+dy,)" =e%dx |

e being the number of which the hyperbolic logarithm is unity; therefore

3 Lary, = (e - 1),

1

dy, no
(=% )

by taking care to apply to the characteristic d the exponents of the powers of dy, and
to change the negative differences to integrals.

If, in equations (1) and (2), we suppose further ¢ infinitely small and equal to dz,
we will have

4) 'y, =

1 n
LAy, = dy, and sy, = d—n/ ydz".
T
We have besides
(1+ Ay,)’ = e 1oel0H80) — 1 4 drlog(1 + Ay,);

these equations will become thus

d"y, - n
) o = log(1+ Ay,
©) / Cdn— L

Yol = Nog(1 + Dya)™

We can remark here a singular analogy between the positive powers and the differences;

the equation 4
YAy, = (14 Aye)' =1

holds yet in raising its two members to the power n, provided that we apply to the
characteristics A and ' A the powers of Ay, and of ! Ay, because it is clear that in
this case we will have equation (1).

The same analogy subsists between the negative powers and the integrals, and the
preceding equation holds still in raising its two members to the power —n, provided
that we change to integrals of the same order the negative powers of Ay, and of ' Ay,;
we will form thus equation (2).

It is likewise in the equation

dyg
Ay, = e*ar —1;

in raising its two members to the powers n and —n, it will still be true and it will
be changed into equations (3) and (4), provided that we change the positive powers
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of * Ay, and of dy, into differences of the same order, and the negative powers into
integrals of the same order. We see, besides, that these analogies hold to that which the
products of the function u, generator of y,, with the successive powers of % — 1, are
the generating functions of the successive finite differences of y,, while the quotients
of u with these same powers are the generating functions of the finite integrals of y,.

XL

The preceding formulas are able to be of use only in the case where the finite and
infinitely small differences of y, proceed by decreasing; but there is an infinity of cases
in which this does not take place and where it is however useful to have the expression
of the differences and of the integrals in convergent series; the simplest of all is that in
which the terms of one series, of which the differences are convergent, are multiplied
by the terms of a geometric progression: we are going to occupy ourselves with it first.

The general term of the series thus formed can be represented by h”y,, y, being
the general term of a series of which the differences are convergent. This put, we name
w the sum of the infinite series

Yo + y1ht + y2h* 2 + ysh®t® + - + Yoopoores,

1 n , 1 "
Z 1) =u|h(1+=—1) -1
u(tl ) uh(-i—ht ) ]

The coefficient of ¢*, in the first member of this equation, is the n'M finite difference

of h”y,, x varying with the quantity ¢; besides, if we expand the second member with
respect to the powers of % — 1, the coefficient of ¢*, in u (% — 1)T, will be, whatever

be r, h* A"y,. The preceding equation will give therefore, by passing again by article
I, from the generating functions to their corresponding variables

we have

(7 LAy, = hE[hI(1 + Ay, — 177,

provided that, in the expansion of the second member of this equation, we apply to the
characteristic A\ the exponents of the powers of Ay, and that thus, in place of (Aym)o,
we write A%y, that is y,,.

By changing n into —n, we will have, as in the preceding article

h/fl;

. : +az™ "t + bR f,
W T Ag) 1] d

(8) 1ZrL(hLym) —

a, b, ..., f being the n arbitrary constants of the integral of the first member, of which
the addition becomes useless in the case where h = 1, because then the second member
contains the integral ¥"y,, which it no longer contains when h differs from unity.

If we suppose y,. equal to a function y; of x1, x1 being equal to ¥ and r being
supposed infinite, we will have Ay, = dy;, the difference dz; being equal to %;
moreover, if we make h™ = p, we will have h* = p®, and the function h”y, will be
changed into p™y;; now, if we suppose ¢ infinitely great and % = q, it is clear that, =
varying with i, z1 will vary with o, in a way that ' A”(p®1y) and ' S7(p*1y;) will
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be the difference and the n' finite integral of p®1%;, x; varying with the quantity c.
We have besides h’ = p®; equations (7) and (8) will become consequently

LA™ (pTryr) = p™ [po(1 + dyy)t — 1],

1 p*!
S (P yr) = .
(p yl) [p‘)‘(l + dy1)" — 1]

—taz} bl 4

now we have .
. Y1
(L+dyr)" =@,

therefore
9 lAn 1 — Tl a(’%fln
©) (p"y1) = p™ (pPe” ™ ;
P
A0 RpTy) = o bar] T b
i)
0
by taking care, in the expansion of these equations, to write y; instead of (%) and

"y
dzl!

If, in formulas (7) and (8), we suppose i infinitely small and equal to dz:, * A" (h®y,,)
will be changed into d" (h®y,) and ' £"(hy,) into ["(h®y,); we have besides

n
instead of (%) , i being any whatsoever.

R (1 + Ayg)' = 1+ dxlog[h(1 + Ay,)];
hence, we will have

d"(h*ys)

dx™

an = h*[log(1 + Ayz)]™,

n h(E
12 h*y, da™ = b P S
(12 / P fogh(Lt Mgy 0 T T s

I must observe here that equations (1), (2), (3), (4), (5) and (6) of the preceding article
have been found by Mr. de la Grange, in the Mémoires de Berlin for the year 1771,
by means of the analogy which exists between the positive powers and the differences,
and between the negative powers and the integrals; but this illustrious author is content
to suppose it without giving the demonstration of it, which he regards as very difficult.
As for equations (7), (8), (9), (10), (11) and (12), they are new, with the exception of
equation (10), of which Mr. Euler has given the particular case where n = 1 in his
Institutions de Calcul différentiel.
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XII.

We will have an infinity of analogous theorems to those of the preceding articles if,
instead of considering the differences and the integrals of y,, we considered any other
function of this variable; it will be easy to deduce them from the general solution of the
following problem:

['(y.) representing any linear function of Yu, Yu+1, Yzt2, - - -, and Vy, another
linear function of these same variables, we propose to find the expression of T'(y,) in
a series ordered according to the quantities V., VY, V3yg, .. ..

For this, let u be the generating function of y,,, us that of I'(y,) and uz that of
V., s and z being functions of %; we will begin by drawing from the equation which
expresses the relation of % and of z the value of % in z, and, by substituting it into s,
we will have the value of s in z, but, as it can happen that we have many values of %
in z, we will have as many different expressions of s. In order to have one which can
belong indifferently to all these values of s, we will suppose that the number of values
of % in z be n, and we will give to the expression of s the following form

1 1 1
- ZzW 4 72y = g1
S—Z—i—tZ +t2Z + +t"*12 ,

Z, ZMW 7z being some functions of z which the question is to determine; now,
if we substitute successively into this equation, in place of %, its n values in z, we will
form 7 equations by means of which we will determine the n quantities Z, Z(), Z(2) |
there will no longer be a question next but to reduce these quantities to a series ordered
with respect to the powers of z and to substitute them into the preceding equation. This
put, if we multiply this equation by w, the coefficient of ¢*, in us, will be I'(y,); this
same coefficient, in any term such as “tf , will be, by article II, equal to V°y, 4. The
preceding equation will give therefore, by passing again from the generating functions
to the corresponding variables, an expression for I'(y,,) by a series ordered according
to the quantities V¥, V¥, V320 oo, VYot V2si1s oo s Vintn_1s -« -

We can suppose next, for more generality, that the quantities Z(1), Z(®), z(®),
..., instead of being multiplied by %, tim t%, ..., are multiplied by some functions
whatever of %, and we will have by this means an infinity of different expressions of
I'(ya).

If we suppose

q

s = tfn,

b ¢
o z=a+ s+ 5+ F
t* t 2

I'(y,) will be changed into y,;; we will have therefore, by this process, the value of
Yz+4 in a function of Vy,, V2y,, . ..; but the method that we have given for this object
in article V is of a much more easy use.
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XIII.
Of series of two variables.

We consider a function y,, ,,, of two variables x and z1, and we name u the infinite
series

Yo,0 + Y10t + y2,0t2+y3,0f3 + ot Yp ot + yz+1,0f“1 + o Yoo,0t™

+yo,1t1 + y1,1t1t+y271t1t2 +---+ yx—1,1t1tr_1 +yp ittt + Yoo,1t1t™
+y0,2t%+y1,2t%t N yI72’2t%t1—2 d =+ yoo,ztft"c
+ cee

the coefficient of twtfl will be y; »,; thus u will be the generating function of ¥, ,,
and, if we designate by the characteristic A the finite differences when x alone varies
and by the characteristic /\; those differences when x; alone varies, the generat-

ing function of Ay, ,, will be, by article II, u (% — 1) and that of Ay, o, will be

u (i — 1): hence the generating function of Ay, ,, will be u ( — 1) (% — 1),

11

whence it is easy to conclude that that of A’/Al'y, ., will be u (+ — l)i (% - 1)
In general, if we designate by Vy, ,, the quantity

AYz 2y + BYst1,e, + CYpi2a,
+B1Yz,z1+1 + C1Yot1,z+1+
+C2Yu iz 42+

+ [ ,

if we designate similarly by V?y, ., a function in which Vy, ., enters in the same
manner as ¥, ., enters in Vy, . ; if we designate further by V3yx7x1 a function in
which VQy_mE1 enters in the same manner as ¥y, ., in Vy, ., and thus in sequence, the
generating function of V™, ., will be

uA+§+g+ +&+ﬁ+ +@+ y
t 2 th ot t2 '

1 Vel B B, "
Tt = —1 i A+ — 4+ 4+ = +...
ul(t )(tl )(*ﬁ T )

is the generating function of AiAil V™ p—r iz —r1 -
s being supposed any function of % and of 1, if we expand s° according to the

hence

t1’
powers of these variables and if we designate by % any term of this expansion,
1
the coefficient of ¢*¢]* in % will be Kyyim. ¢, +m,; we will have therefore the

o

coefficient of t*¢}" in us’ or, that which returns to the same, we will have V'y, . : 1
by substituting, in s, y, in place of % and y,, in place of %; 2° by expanding that
which us® then becomes according to the powers of y, and of y,,, and by writing in it
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in the place of any term, such as K (yz)™ (Yz, )™, KYztm o +m, and, consequently,
by substituting Ky, ., in the place of entirely constant term K or K (y.)° (v, )°.

If, instead of expanding s’ according to the powers of % and ti, we expand it ac-
L mi

cording to the powers of %—1 and %—1, and if we designate by K (% — 1)m (% — 1)

any term of this expansion, the coefficient of t*t7* in Ku (% - 1)m (% — 1) " will

be KA™ ATy, ., ; we will have therefore Viymm: 1° by substituting, in s, Ay, 4, in
place of % — 1 and Ay, 4, in place of % — 1; 2° by expanding that which s’ then
becomes according to the powers of Ay, ., and of Ay, -, and by applying to the
characteristics /A and A\; the exponents of these powers, that is by writing, in the place
of any term such as K (Ayy z,)™ (D1Yz 2, )™, this one KA ATy, 4.

Let 3 be the characteristic of the finite integrals relative to x and 3; that of the
integrals relative to x1; let moreover z be the generating function of X'y, ,.,; we

. [
will have z (% — 1)1 (% — 1) " for the generating function of ¥, . ; this generating
function must, by having regard only to the positive or null powers of ¢ and ¢, be
reduced to u; we will have thus

1 VeI g a b c q
1 1) = p T T 4
z(t )(n > T

ai by C1 q1
+—+=+g5+ -+,
th 88 ti
a, b, c,..., qbeing some arbitrary functions of t; and a1, b1, ¢, ..., g being some

arbitrary functions of ¢, hence

Coutt +att U b gt )T bt T 4t

N (1 —t)i(1 —ty)¢ '
XIV.

On the interpolation of series in two variables and on the integration of equations
linear in finite and infinitely small partial differences.

Yu+i,z,+4, 1S evidently equal to the coefficient of t7t7* in the expansion of #,
1

now we have

1— 1 1_ i1
U142t (14 12n
it t t
1—t i(i—1) (1—t\" ii-1)GE—-2) [1-t\"
1
Tt ( t ) T3 i )T

s 2
1—t . l—t;1—t i(i—1)1—t [1—t
D e P T R t +

.. 2 .o 2
21(2171) 17t1 Zl(llfl) 17t1 1-—t
R ( ty R ty i
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the coefficient of u (% - l)r (% - 1) ' being equal to

i(i— 1) —2) (i —r+1) iy (iy — 1)(iy —2) -+ (i — 1 + 1)
1.23...r 1.23...7m

T1
Now, the coefficient of ¢7*, in the expansion of u (1 — 1)T (% — 1) ASATAT Y 2y

we will have therefore, by passing from the generating functions to the corresponding
variables,
i(i—1)

1.2
+ 1A Yp 01D DAY g gy +
il(il — 1)
1.2
+ ce .

an equation which can be put under this very simple form

Yotio+in = Yo,z T iAyx,xl + AZyﬂc,wl +oee

B8y, -

Yz+i,a+iy — (1 + Ayw,m)i(l + Alyl',wl )ila

provided that, in the expansion of the second member of this last equation, we apply to
the characteristics A and A\; the exponents of the powers of Ay, ., and of Ay o,
and, consequently, that in the place of the entirely constant term or the term multiplied
by (DAY 21 )Y (A1Yz 2, )0, We write Yy 4, -

XV.

We suppose now that, instead of interpolating according to the differences of the
function y, ., , we wish to interpolate according to other laws; for that, let

B C D P q
—A Z =24 £
z +t+t2—|—t3+ +t”_1+t”
B, C; D
Cy Dy
2 +t%t+~-~

_|_

If we make
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we will have
+b+c+ +q
z=a+-+—=+---+—.
t t2 tm

Itis easy to conclude from it, as in article V, the successive values of 7, i, 757, - - -
as functions of a, b, c, . and z, and it is clear that, in any term of the expression of

tt , the sum of the powers of and i will not surpass ¢ when ¢ will be a positive whole
number, n; being supposed equal or ‘less than 7.

We consider now formula (u) of article V and we suppose that by expanding it
according to the powers of i the quantity

bZz(O)n-l-l + bZZ(l Zont1 T

+CZZ(O)H+2 + czZ( )2n+2 + -

we have
1

M+Nz+t:t+— (M<1> N(l)z+~-~)+t—2(M(2)+N(2)z+ DAt M<>
1 1

the ulterior powers of - are destroyed reciprocally, since the expression of - must not
contain them at all. We suppose similarly that by expanding the quantity

cZi(S)nJrl + czZ( )2n+1 +oot erﬂ)nH + ezZ( )2n+2 +-

we have
My+Nize o= (M(1)+N(1)z+ 4L (MO YN g '+ti*1M1(i_1);
i 1
which by expanding the quantity
eZz(l)nH—k

we have

1 1 e

M2+Ngz+---+t—(MQ(I)+N2(1)Z+...)+...+ tif2M2( 2)
! 1

and thus in sequence; we will have

1 1 1 1 .
ﬁ:M+NZ+'-'+7(M(1)+N(1)Z+--')+tf2(M(2)+N(2)Z+-~-+t7M(l)
1 1 1

1 1 1
+t[M1+N1Z+--~+t(M1(1)+N1(1)z+-~-)+Q(M(2)+Nl(2)z+...)+ .
151

1

1 1 i
+t2[M2+sz+m+t(M§1>+N§”z+ D Lo ﬂ
1
1 1 (1) (1) 1 (i—n+1)
“Ftnj Mnfl—"_Nn*lz—*—+?(Mn—1+Nn—lz+)++tzT+1Mn 1
1
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This put, if we name Vy, ., the quantity

AYz 2y + BYst1,.e, + CYpi2a,+
+B1Yzzr+1 + CiYzt1,o 41+
+C2Yg zyy2t+

+ e ,

the coefficient of t*¢7* in the expansion of the quantity % will be, by article XIII,
1
VH*Yptr,z,+r 5 the preceding equation will give consequently, by multiplying it by u
and by passing from the generating functions to the corresponding variables,
Yotiwr =MYzo, + NVYzz + -+

+ ‘M(l)yx@H_1 + ]\/'(1)vym_rzl+1 N

+ ]\4(2)%0}%1_’_2 + N(Z)Vywywl"l‘Q 4.

+ M(i)yﬁf,xl-‘ri

+ Mlya:-i-l,wl + vayw-‘rl,acl + -

+ Ml(l)yw+1,w1+1 + N1(1)V2Ux+1,ac1+1 +-

+ Mfifl)yﬁl,wﬁifl

+ Mn—lyz+n—1,fc1 + Nn—lvym+n,—1,m1 + -

+ M?S,ljlyx+”—1,x1+1 + N7(1131Vym+n—1,z1+1 +oee

(i—n+1)
+ Mn—l Yx+n—1,21+i—n+1-

XVL

If we suppose Vy; ,, = 0, we will have, by making x = 0 in the preceding
equation,
yi,wl :MyO,a:l + M(l)yo,zl-‘rl + M<2)y07x1+2 + -+ M(i)yo,xl—l-i

1 2 1—1
+ My e, + M| )yl,x1+1 + M} )yl,x1+2 o MET Vi
+ e

1 i—n—+1
+ Mn—lyn—l,xl + MT(L_)lyn—lml—i-l + -+ M»,(Ll_anr )yn—l,ml-i-i—n—i-l

M® M M, .. being some functions of i and of 7, the preceding expression of
Yi,z, can be taken under this very simple form

-1 -2 —n+1
()\) Yijx, = E(M(T)Z/O,x1+r+M1(T )yl,xl+7'—1+M2(T )y17x1+7'—2+' : +M£T_1n+ )y7z—1,a;1+7‘—n+17

36



the integral being taken with respect to 7, from r = 0 to » = ¢ 4 1, with respect to the
first term; from r» = 1 to r = 741 with respect to the second term, and thus in sequence.
This expression for y; ,, will be the complete integral of the equation Vy, ., = 0, or,
that which returns to the same, of this

0= AYiz, + BYit1,0: + CYiv2,a, + -+ Plitn—12, + Witn,a
+B1Yi a1 + C1¥it1,0041 +
+C2Yi w42+ -
+ Yizitn-
It is clear that in this integral the quantities Yo z,, Y1,21> Y2,215- - -» Yn—1,2, are the n
arbitrary functions which the integration of the equations Vy; ,, = 0 introduces, it is

necessary to know immediately, or at least to be able to conclude from conditions of
the problem the first n vertical ranks of the following Table:

Yo,0, Y1,0, Y250, Y30, ---5 Yz,0, Yz+1,0, ceoy Yoo,05
Yo,1,  Yi,1,  Y2,1, Y31, -5 Yz, Yzt sy Yoo,
Q) Yo,2,  Y1,2, Y2,2, Y32, ceey o Yz2, Yx+1,25 sy Yoo,25
cey ey ey ey ey e, ey ey ey
Yo,x1s Ylzir Y2,215 Y3205 o5 Yzzys Yz+lay -5 Yoo,xps

ey ey ceey ceey ceey ey ey ceey ceey

Remark.— In a great number of problems, and principally in those which concern
the analysis of chances, the first n vertical ranks are recurrent series of which the law
is known; in this case Yo z,,¥1,2,, - - - are given by some terms of the form Ap®™'. We
suppose consequently that the expression of yg 5, contains the term Ap®!, the corre-
sponding part of ZM(T)yO,z1+r will be

Ap‘”l(M(O) + M(l)p+ M(2)p2 + M(3)p3 N +M(i)pi);

but
©) MO @ A3 M@
M ¢ ¢ 2 t
1 1
is the expansion of
bZz(O)nJrl + CZz(O)n+2 +o
according to the powers of . By changing therefore t— in this last quantity into

p and naming P that Wthh it then becomes, we will have APp* for the part of
SMT )y0,$1+r which corresponds to the term Ap®!. It follows thence that, if the value
of yo s equal to Ap™ + Ayp7* + Aop3' +- - - and if we name Py, P, ... that which
P becomes, by changing successively p into py, pa, ..., we will have

SM T yg 4y vr = APP™ + A1 Pipf* + Ay Popst + -+

We will find similarly that, if the value of y; ,, is expressed by qul +B1g7* +Bagst +

,and if we name @), @1, @2, . .. that which the quantities cZ; )n+1+eZl»(g),L+2+- X
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become when we change successively % into q, q1, q2, ..., we will have

SMT V4 vt = BQE™ + BiQuigi" + B2Qaqs + -+ -

and thus in sequence; we will have thus the most simple expression of y; ,, to which
we can arrive.

If we have V2y, ,, = 0, we will have, by making z = 0 in the general expression
of Yz4i,4, Of the preceding article,

Yier =Myozr + MDyo g1+ + MDyo 4
+ NVyo,e, + NOVyo 41 + -+
+ Miys e, + Ml(l)y1,x1+1 +oe Ml(iil)yl,ml-&-i—l
N VY1 ey + NV g+
e

+ Mn—lyn—Lwl + Mr(bl_)1yn—1,m1+l +---+ M’y(Ltanrl)yn—l,ml-i-i—n—i-l
+ anlvynflﬂl + - )

Yo,515 Yl,ays - > Yn—1,215 VY0,21> VYl z1s-- s VYn—1,4, being the 2n arbitrary func-
tions of the integral of the equation V2ym1 = 0; we will have, in the same manner,
the integrals of the equations V3y; ,, =0, Viy; ., =0, ....

I have named elsewhere (see Volumes VI and VII of the Mémoires des Savants
étrangers?) the series formed according to the equation V"y; . = 0 récurro-récurrentes
series; they differ from recurrent series, in that in those the terms are functions only one
variable alone: thus, all their terms in Table (Q) are either in one same vertical rank,
or in one same horizontal rank, or on one same straight line inclined to the horizon
in any manner, instead that the terms of a récurro-récurrente series, being functions of
two variables, fill all the extent of Table (Q) and form a surface, such that the arbitrary
quantities, which, in the case of recurrent series, are determined by as many points of
the line on which their terms are disposed, are determined here by the straight lines
or by some polygons placed arbitrarily in the preceding Table. The equation which
expresses the law of a recurrent series is in finite differences; that which expresses the
law of a récurro-récurrente series is in partial finite differences, and its integral contains
a number of arbitrary functions equal to the degree of that equation.

XVIL

The value of y; ., in formula (\) of the preceding article, depending on the knowl-
edge of M ("), Ml(r), ..., it is clear that these quantities will be known when we have
the coefficient of - in the expansion of ZZ-(E)n 41> all is reduced therefore to determining

1

20euvres de Laplace, T. VIII, p. 5 and p. 69, “Mémoire sur les suites récurro-récurrentes et sur
leurs usages dans la théorie des hasards” and “Recherches sur 'intégration des équations différentelles aux
différences finies, et sur leur usage dans la théorie des hasards.”
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this coefficient; now we have, by article V,

70 = — !
¢ actHa —ag)(a—ag) -
1
o i+1
acdi™ (a1 — ar)(a; —ag) - -
1
- —
acs™ (ag — a1)(az —ay) - -
a,ai, ag, ... being functions of % If we make % = s, and if we differentiate the
preceding expression of Zi(o), n times in sequence with respect to s, we will have n+ 1
equations, by means of which, by eliminating the n quantities o’, o}, o4, ..., we will
) dz® a2z

arrive to an equation among Z; ’, ey T e of which the coefficients will be
functions of a1, s, . .. and of their differences; now it is clear that «, a1, o, ... must
enter in the same manner in these coefficients; we can therefore, by the known methods,
determine them as rational functions of the coefficients of the equation which gives the
values of a, a1, ... and of the differences of these coefficients, and, consequently, as
rational functions of s; by making next the denominators of these functions disappear,

we will have a linear equation between Zi(o) and its differentials, of which the coeffi-

cients will be some rational and entire functions of s, or, that which returns to the same,

(0)
K d"Z;

o T ds

of % This put, we will consider any term of this equation, such as , and name

A the coefficient of t% in the expansion of ZZ-(O); this coefficient in the expansion of
1

aH Z.(O) .
f—{i —o— will be
(7 d

K(r—m+p)(r—m+p—1)(r—m+p—2)- (= m)A e

By thus passing thus from the generating functions to their corresponding variables, the
preceding equation between Z@n 41 and its differences will give an equation among
Ars Art1, ... of which the coefficients are variables, and, by integrating it, we will
have the value of \,.

It follows thence that integration of every linear equation in finite partial differ-
ences, of which the coefficients are constants, depend: 1° on the integration of a linear
equation in finite differences of which the coefficients are variables; 2 ° of a definite
integral; I name thus any integral taken from one determined value of the variable to
another determined value of the variable. The definite integral on which the value of
Yi,z,in formula (\) depends is relative to r and must be extended from » = O to r = 1.
Relatively to the differential equations of the first order, we have

70 L
¢ aaitl’
we have, moreover
a=A + Bls,
B
a=——,
a



that which gives

40 _ (A4 Bis)’
SN L
whence we deduce this differential equation
dz©® ,
0= " (A+ Bus) iB, 7",

that which gives the equation in finite differences
0= A(T + 1))\,-.;,.1 + BirA, —iB1 A,

We have next, in this case,
M = B,

formula () of the preceding article will become therefore

Vi, = BEAY0,01 41

this will be the complete integral of the equation in partial differences
0= AYiz, + BYiv1,2, + B1¥Yi .z, +1,

provided that the integral be taken from » = 0 to r = ¢ + 1, and that the arbitrary
constant of the value of \,. be such that

oA
B

In passing from the finite to the infinitely small, the preceding method will give the
integral of the equations linear in infinitely small partial differences of which the coeffi-
cients are constants: 1 ° by integrating a linear equation in infinitely small differences;
2° by means of definite integrals, that which give the integration of these equations
in an infinity of cases which resist the known methods; but, as the passage from the
finite to the infinitely small can offer here some difficulties, I have preferred to seek
a method directly applicable to equations linear in infinitely small partial differences,
and I have found the following, which has the advantage of extending itself to the lin-
ear equations of which the coefficients are variables. I will limit myself to consider the
differential equations of the second order as being those which present themselves the
most frequently in the application of analysis to physical questions.

XVIIL

All equations linear in the infinitely small partial differences of the second order
can be put under this form

0%u ou ou
— +n— +lu,

) 0= 0s0s7 + m@s 0s1
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m, n and [ being any given functions of s and of s1, and, if we name ¢ (s) the integral
[ ds ¢(s), p2(s) the integral [ ds¢i(s), ¢3(s) the integral [ ds¢o(s), and thus in
sequence; if we name similarly 1 (s1) the integral [ dsq ¢(s1), ¥2(s1) the integral
f dsy 1¥1(s1), and thus in sequence, the value of u can be expressed by a series of this
form

u=Api(s) + AW gy(s) + AP g3(s) + A®gy(s) + - -
+ Bipr(s1) + BWipa(s1) + BPrps(s1) + BOrpy(s1) + - -
¢(s) and ¥ (s1) being two arbitrary functions, the one of s and the other of s; (see on

this the Mémoires de I’Académie for the year 1773, p. 355 and following.?) This put, if
we substitute this value of u into equation (S) and if we compare separately the terms

multiplied by ¢(s), ¢1(s), p2(s),. .., ¥(s1), ¥1(81), ¥2(s1), . . ., we will have, in order

to determine A, A, A@ . B, BM B® _  the following equations:
0A
0= g + 77’7u47
1
9AM) A oA  0A
0= AW 4 T T~ +1A
) 051 tm + 0505, tm Os + nf)sl 4
9A(3) 9240 oA aAM
51 tmAT 0s0s1 s T 0s1 + ’
0B
0= g + nB7
oBW 9*B OB 0B
0=-—F—+nBYW+ —— 4t m— +n_— +1B,
“" 0s 0s0s1 0s 0s1
BE 2 (1) B (1)
0:8 42 —i—ma +na +1BW,
s 5051 0s 0s1

When, in satisfying these equations, we succeed to find AW = 0or BW = 0, n
being a positive whole number, then u can always be expressed in finite terms, by
having regard only to the variables s and s; alone of the equation. I have given in the
Mémoires cited a general and quite simple method to have in this case the complete
integral of this equation; but, if one or the other of the two equations A*) = 0 and
B®) = ( cannot hold, there must be necessarily, in order to have the expression of u
in finite terms, introduced a new variable in the following manner.

For this, we will observe that, if we make the integral [ ds ¢(s) begin when s = 0,
we will have

/ds o(s) = ds{p(0) + ¢(ds) + ¢(2ds) + ¢(3ds) + - - -
+o(rds)+o[(r+1)ds]+ -+ &(s)};

30euvres de Laplace, T. X, p. 21
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therefore, if we name 71" the series

$(0) + to(ds) + t2¢(2ds) + t3¢(3ds) +
+t"p(rds) + t"TLo[(r + 1) ds] + - - - + td5 p(s),

f ds ¢(s) or ¢1(s) will be equal to the coefficient of £ in the expansion of the function

1—? . Itis easy to conclude that ¢,(s) will be equal to the coefficient of ¢ in the

expansion of -

= t)2 , and, generally, that ¢,,(s) will be equal to the coefficient of ¢ in

T ds*
f a—or>

equal to the coefficient of ¢4 ~" in the expansion of =45

the expansion o moreover, it is clear that the coefﬁcient of ¢(rds) in ¢, (s) is

(1 t)u , and consequently equal to

(ot ) (=) = +8) (gt 1) st
1.23...(p—1) '

We suppose 7 infinite and equal to =, we will have % for this coefficient;

whence it follows that the coefficient of ¢(r ds) or ¢(2) in the expression of u will be

A®) ABG) ) A@

(e _ Y 3 VR
ds | A+ A =2+ Gols =2+ sl =2 ggge =2+
therefore, if we name I'(s — z) the sum of the series

A AB)
A+ AM (g 2 (s—2)? — ¥ ...
R S A WGt A w1l

and if we suppose ds = dz, we will have [ dzT'(s — z)¢(z) equal to the series

A¢1(S) + A(l)d)g(S) + A(2)¢3(S) + A(3)¢4(S) + - 5

provided that the integral is taken from z = 0to 2z = s.
If we name similarly II(s; — z) the sum of the series

B®@) B®)
B+ BW(s; —2) 4+ =—(s1 — 2)? +1

-_— 3 DY
12 3(81 Z) +

we will find, by the same process, that [ dz II(s; — z)1(z) is equal to the series

Bip1(s1) + BPapy(s1) + B@upg(s1) + -+ -,

provided that the integral be taken from z = 0 to z = s1; we will have therefore

_ /sz(s —2)b() + /dz T(sy — 2)8(2),

the integral of the first term being taken from z = 0 to z = s, and that of the sec-
ond term being taken from z = 0 to z = s;. We can observe here that the functions
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I'(s — z) and TI(s; — z) are as well particular values which satisfy for « in the pro-
posed equation in partial differences. Indeed, it is clear, by the nature of the values of

A, AW AR that, if we substitute into this equation, in place of u, the series
AR
A+A(1)(s—z)+ﬁ(s—z)2+ ,

z being regarded as constant, it will be satisfied. But, among all the particular values of
w which contain an arbitrary constant z, we must choose for I'(s — z) that which gives
0= d“ -+ mu when z = s, because then u is reduced to A, and that we must have

0= BA + mA; it is necessary similarly to choose for II(s; — z) a partlcular value of

U Wthh contains an arbitrary constant z, and in which we have 0 = s Y + nu when
z = s', because in this case u is reduced to B and that we must have 0 = ‘?Tf + nB.
We can arrive directly to these results in the following manner:

We suppose that the integral [ pdz ¢(z), taken from z equal to any constant to
z = s, is a particular value of u; we will have, in this case,

681 / 351

u _ / 9 12 6(2) + Po(s),

0s Js
P being that which p becomes when we make z = s; thence we will deduce
oP
0sds; / 05051 dz9(z) + 7¢( )

By substituting these values into equation (S) in partial differences, we will have

_(oP 9%p Op Jdp
O—((gl—i-mP)qS() /dzd)(z) <88681+ 88+n(31+lp>

that which gives, by equating separately to zero the terms affected by the integral sign,

We see thus that, if we have two particular values of u represented by p and p;, which
contains an arbitrary constant z, and which are such that we have

0= a—P +mP,
881
P

0= Q 4,771]317
Js

P being that which p becomes when we make z = s, and P; being that which p;
becomes when we make z = s1, we will have, for the complete expression of u,

u= [pdzo)+ [ mdzue),
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¢(2) and 1 (2) being two arbitrary functions of z, and the integral of the first term being
taken from z equal to any constant, which we will suppose zero, to z = s, that of the
second term being taken from z = 0 to z = s, that of the second term being taken from
z=0toz =s7.

If we change z into st in the term [ pdz ¢(z), and if we name ¢ that which p
becomes by this change, we will have

[pdzot) = [ asdeotst),

and, as the integral relative to z must be taken from z = 0 to z = s, it is clear that the
integral relative to ¢ must be taken from ¢t = 0 to t = 1. If we name similarly ¢; that
which p; becomes when we change z into s, we will have

/pldﬂﬁ(z) = /Q131 dt(sit),

the integral relative to ¢ being taken again from ¢ = 0 to ¢ = 1; we can consequently
give to u this form

u= /dt [sq ¢(st) + s1q1 Y(s11)],

the integral being taken from¢t =0to ¢t = 1.

If we name K the integral [ pdz ¢(z) taken from z = 0 to z = oo; this integral,
taken from z = 0 to z = s, will be clearly equal to K — [ pdz ¢(z), this last integral
being taken from z = s to z = oo; therefore, if we make z = s + z, and if we name r
that which p becomes by this change, we will have

/pdz¢(z) K- /rdz1 (s + =),

the integral relative to z being taken from z = 0 to z = s, and the integral relative to z;
being taken from z; = 0 to z; = oo. If we name similarly K the integral f p1dz (z)
taken from z = 0 to z = oo, if we make z = s1 + 21, and if we name r; that which p;
becomes by this change, we will have

/p 1dz(z) = Ky — /m dz1 (81 + 21),

the integral relative to z being taken from z = 0 to z = s, and the integral relative to
z1 being taken from z; = 0 to z; = oo; we will have therefore

u=K+ K — /dzl[r¢(5 + 21) + (st + 21)].
The functions ¢(s + z1) and ¢(s1 + z1) being arbitrary and even being able to be
supposed discontinuous, we can, without harm to the generality of this value of w,

suppose them so that we have K + K; = 0; we will have therefore, by changing the
sign of these functions,

u = /dzl[rgb(s + z1) + r1p(s1 + 21)],
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the integral being taken from z; = 0 to 23 = oc.

These different forms which we can give to u have each some particular advantages,
according to the different problems which we are proposed to solve. We will see below
(art. XX) a use of the last in the theory of sound; but we must observe that they are all
dependent on definite integrals and that they can be restored to some indefinite integrals
only in the case where one or the other of the quantities p and p; is a rational and entire
function of z.

Every difficulty of the integration of equations linear in the partial differences of the
second order is reduced thus to determine these quantities; it is that which seems very
difficult in general: we will limit ourselves to consider some particular cases which are
relative to many interesting problems which we have been able to solve yet only in a
particular manner.

XIX.

We suppose first m, n constants in equation (S); we will satisfy equations (y) and
(7') of the preceding article by making
A — e—’msl—ns7
AW = 7M1y () sy,
; —1)?
A4 e—msl—m%si
A(,u) — e—msi—ns (mn — Z)M gH
1.23...0 Y

B = efrnslfns7
BW = e~ T (mn — 1) s,

(mn—1)* ,

B(2) — e~ms1—ns 2,
1.2

B(;L) — e~ ms1—ns (mn — l)” gt

1234

e being the number of which the hyperbolic logarithm is unity; we will have thus

(mn — l)2 2

D(s—z)=e ™7™ 1+ (mn—1s1(s—2)+ 15 s2(s — z)?
(mn —1)° 4 3
123 ST

so that I'(s — z) is equal to a function of s1 (s — z) multiplied by e=™%17 "%, Let y be
this function and we name 6 the quantity s; (s — z); e~ "5y will be, by that which
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precedes, a particular integral of the proposed equation in partial differences. We will
substitute it therefore for u in this equation and we will observe that, in this case,

% — _ne—msl—nsy + —msl—ns@@,

0s 90 0s’
now we have

00

Os

al _ ,—msi—ns [ _ + @
gs ¢ TSy )

= 51,

hence

We will have similarly

Ou —ms1—ns 6y
55, ¢ [ my + (s z)ae},
0%u e oy Oy Oy 9%y
— msy ns . . v < 97 .
05951 © [m"y nis=2)gg ~msige tae t 892}

If we substitute these values into equation (S), we will have this in the ordinary differ-
ences 5 52
Y Y

0=(- — +0—

(I —mn)y + 55 + 0275,

and it will be necessary to determine the two arbitrary constants of its integral in a
manner that we have y = 1 and % = mn — [ when 6 = 0. Let I(6) be that which this
integral becomes, we will have

[(s—2z)=e ™17 [s1(s — 2)];
it is easy to see that we will have similarly
I(s; — z) = e ™7™ [s(s1 — 2)],

hence

4= e—msins { / dz d[s1 (s — 2)] #(2) + / dz T[s(s) — z>]w<z>} ,

the integral of the first term being taken from z = 0 to z = s, and the integral of the
second term being taken from z = 0 to z = s;. Indeed, if we substitute this value
of u into the proposed equation in partial differences, we will be assured easily that it
satisfies it; but, in order to make this substitution, we must observe in general that, the
integral [ udz must be taken from z = 0 to z = s, its difference taken with respect to
sisds [ % dz + U ds, U being that which u becomes when we suppose z = s.

If, [, m and n being always supposed constants, we have [ —mn = 0, we will have
y = 1, and the expression of u will become

U = e~ Mms1—ns U dz ¢(z) + /dw(z)} = e T gy (1) + Y1 (s1),
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so that the value of w is then independent of any definite integral. But this case is the
sole where this can take place, and it is that which results similarly from that which has
been demonstrated in the Mémoires de I’Académie, year 1773, page 369.4
The equation of the vibrating strings in a medium resistant as the speed is
20%u  9%u ou
o =— +b—
o2~ o2 ot’

u being the ordinate of the vibrating string of which the abscissa is z, ¢ representing the
time, and a and b being two dependent constants, the one of the size and of the tension
of the string, and the other of the intensity of the resistance. If we make at + x = s
and at — x = s1, the preceding equation will become

s bou b ou
0s0s1  4a 0s = 4a 0sy’

the preceding expression of u will become then, by substituting in the place of s and of
s1, their values at + x and at — x,

/dz I[(at — z)(at + = — 2)]@(2)
+ / dz J[(at + z)(at — x — 2)|¥(z)

IS
I
[
w|T

)

the first integral being taken from z = 0 to z = at + x, and the second integral being
taken from z = 0 to z = at — z. We see thence that the problem of the vibrating strings
depends then on the integration of the differential equation

b? dy 82y

y+ 240

0=—T62Y " 29 T Vg2’

we see moreover that, because of the factor e~ %, the ordinate u of the vibrating string
diminishes without ceasing and becomes null after an infinite time, that which besides
is clear a priori.

XX.
We suppose next in the general equation (S) of article XVIII, m = SJ{—SI n =
5 +S ,and [ = 7)2, so that we have to integrate this equation in partial differences
0u ou ou hu
(T 0= A - +

0sds,  s+810s s+ 81081 (s—i—sl)z;

we will be assured easily that the following values satisfy equations () and ("), of the

4Oeuvres de Laplace, T. IX, p. 35.
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article cited

A=(s+s1)77,
24%) = [(f +1)(2—g) + 1] 511—1:15)1 ’
3A®) = [(f +2)(3— g) + h] Sf—liz;,

B=(s+s1)79,

B — [g(l—f)+hlsfsl’
2B® =[(g+1)(2— f)+ 1] s]i(ls)l’
3B®) =[(g+2)(3— f)+ ] SB—‘r(QS)l,
pBW =[(g+p—1)(u— f)+h] lj(:_: ’
We will have thus
L+ [f(1-g) :h]j-‘:;l

D(s—2)=(s4+s1)"7

+[(f+1)(2g)+h]<sz>2+~~ |

S+ 81

therefore, if we make == =0, I'(s — z) will be equal to a function of §, multiplied

by (s 4 s1)~f. We name this function v, so that

I(s—2z)=(s+ sl)*fy,

(s + s1)~ Ty will be a particular value of u, and we will have in this case

ou dy 00
__ —f-1 —f )
R f(s+s1) y+(s+s1) 105"
now we will have
09 1 8=z 1 (1-0),

ds s+ 81 (s+s1)2 s+s1
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hence

we will find similarly

ou g dy

Il f-1 i

D51 (s+ s1) <fy+9d9> ,
0%u dy d?y
9505, (s+s1) [f(f+1)y+d9(2f0+20 f-1-001 9)d92

By substituting these values into the proposed equation in partial differences, we will
have the following equation in ordinary differences
d? d
(@) 0=01—0)=Z +[0(g— f—2)+ 120+ (fg— f = h)y:
do de
it will be necessary to determine the two arbitrary constants of its integral, in a way so

that we have y = 1 and % = f(1—g)+ h when 6 = 0; by naming therefore .I(6) that
which y becomes then, we will have

I ( s—z )
s+s1
INs—2)= ——%.
If we change g into f, and reciprocally f into g in equation (a1), we will have

d*y dy
(by) 0=0(1—-0)—5 +[0(f—9g—2)+1]->+(fg—9—h)y;
do do
and if we determine the two arbitrary constants, in a way that we have y = 1 and
% = g(1 — f) + h when 6 = 0, by naming [J(6) that which y becomes then, we will

have

D (Sl —Z )
s+s1
H S1—R)= ———.
(51 —2) G5+ 50
The two functions I(6) and [J(#) have between them a very simple relation, by means
of which, when the one of the two will be known, the other will be similarly: indeed,
if, in equation (b1), we make

y1 = (1—0)7 9y,
we will have
d?y dy:
0(g—f—2 1] == — f—h)y;

an equation which is the same as equation (a;). Moreover, as we must have, relatively
to equation (b1), y = 1 and % =g — fg+ h when 6 = 0, we will have, in this same
case, y; = 1 and

0=0(1-0)

dy  dy .
@—W—(f—g)zn—g—fg-&-h,
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that which gives
dy,

E:f—fg+h§

thus the two arbitrary constants of the integral of the equation in y; are the same as
those of the integral of equation (a; ), that which gives

hence
0(0) = (1 —0)/~91(h).

We have besides, relatively to equation (b1),

S1 — Z.
s + s1 ’
therefore
N A (=
D =
s+ 81 (s+s1)/—9
and

(s +2)f=9a (%)

M(s —2) = 5+ 51)!

We will have consequently, by article XVIII,
V)

_ ﬁ [/dz& (:‘—SZI> 6(2) +/dz (s+s1)/ 90 (i:sf) ¢(z)} ;

the first integral being taken from z = 0 to 2 = s, and the second being taken from
z=0toz=s7.

If either of these two quantities (::f ) and D(Sl*z), this one for example,
s+s1 s+s81

Ni (;_:szl ) , 1s a rational and entire function of z, then the expression of u, considered

relatively to the corresponding arbitrary function which, in this case, is ¢(z), will be
expressed by a finite series of terms multiplied by the successive integrals of ¢(s);

because it is clear that then [ dz.I ( i ) ¢(z) will be composed of terms of the

s+s1

form H [ z'dz ¢(z), p being a positive whole number; now we have, by integrating
by parts,

/z“dz d(z) =21p1(2) — uz”flqﬁg(z)
(=122 p3(2) — - £1.23. . pduya(2) + C,

an expression delivered with the [ sign, and in which we must make z = s. We see thus
that the part of the expression of « relative to the arbitrary function ¢(z) is independent,
not only of every definite integral, but further of every kind of integral; now there results
from this what I have demonstrated, in the Mémoires cited in 1773, that the complete
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expression of u is then entirely independent of every definite integral, that is that it can
be expressed by some indefinite integrals, uniquely relative to the variables s and s1,
of the proposed equation. We can be assured of it yet very easily by means of formula
(V), because it is clear that the integral

/dz (s+2)f 91 (ilﬂf) W(2)

will be in this case reducible to some terms of this form
H/z“dz (s 4 2)/799(2)

1 being a positive whole number or zero; now we can, by some integrations by parts,
reduce the integral

/ 2dz (s + 2)T 799 (2)

to some terms delivered with the [ sign and to some integrals of this form

[dzts 4 2ruen

this last integral, necessarily being taken from z = 0 to z = sy, is evidently equal to
this one

/dSI (5 +51)"i(2)

and, consequently, independent of every definite integral; we see thence how the inte-

gral
/dz (s +2)f 7901 (:il—l—_sf) U(2)

can be reduced to some indefinite integrals, although the factor
(s+2)f79a <81 — Z>
s+ s1

may not be a rational and entire function of z.

Now, the condition necessary in order that the expression of .I (: 3:; ), reduced to

series, is terminated, is that we have A(®) = 0, ; being a positive number, that which
gives
0= +pr—1(kr—9) +h,

whence we deduce

l+g—f+/(f+g-1)>—4n
o= ; :

When either of these two values of y is zero or a positive whole number, then .1 (SSJ:SZI )

is a rational and entire function of z; by changing f into g and reciprocally, we will
have

L+ f—g+/(f+g—1)2—4n
= : :
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and, if one or the other of these values of i is zero or a positive whole number, the value

of J < 51— Z) will be a rational and entire function of z; in all these cases, the expression

of u will not depend on any definite integral; otherwise it will be necessarily dependent.
If we name z the distance from one molecule of air to the origin of the sound in a
state of equilibrium; x + w its distance after time ¢, we will have

0% 282u n ma? Ou  mau
R _ 2l v
ot? 0x2 r Ox x2

a? being a constant coefficient depending on the elasticity and on the density of the air,
and m being 0, or 1, or 2, according as we consider the air either with one alone, or
with two, or with three dimensions (see, on this object, the learned researches of Mr. de
la Grange on sound, inserted in Volume II of Mémoires de la Société royale de Turin).
Let x + at = s, x — at = s1; the preceding equation will become

_ 0%u n m % n % . mu
~ 0s0s;  2(s+s1) \Os  Os; (s +51)2’

formula (V) will become therefore

e o) e s () ]

the first integral being taken from z = 0 to z = x + at, and the second being taken

from z = 0 to z = z — at. The function I (2£%=2) is the value of y in the differential
equation
d%y dy m?+2m
0=01-0)—+0(1—-20)—= + ——

in which 6 = %, the two arbitrary constants of its integral being necessary to
determine, so that we have
dy m
=1 and — =——(2+m).
y 70 1 (2 +m)
If we have m = 0 or m = 2, the value of y ordered according to the powers of
6 is terminated, and then the value of u is independent of every definite integral; but,
when m = 1, that which takes place when we have considered the air only with two
dimensions, the expression of u is necessarily dependent on a definite integral.
If we change in I (2£2=2), 7 into z = at — z1, we will have, by article XVIII,

= ﬁ/dzll(—%) [6(z + at + z1) + ¢¥(z — at + z1)],

the integral being taken from z; = 0 to 23 = o0o. There results evidently from this
value of u that the molecule of air of which it expresses the derangement begins to
be shaken only when x — at 4 z; is equal or less than the radius of the small sphere
agitated at the beginning; whence it follows that, in the three cases where the air has
one, or two, or three dimensions, the speed of the sound is the same and is determined
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by the equation ¢ = Z; we see thus that the preceding forms of the integrals of the
equations in partial differences have the same advantage in the physical questions as
the forms known at present.

We could still apply the preceding method to the research on the vibrations of
unequally thick strings, to the theory of sound in some tubes of any figure and to many
other important questions; but these discussions would divert us too much from our
principal object.

XXI.

We return presently to the equations linear in the partial differences; although the
formulas which we have given in article XVI, in order to integrate them, have the
greatest generality, there are however some cases where they cannot serve these cases

have place when the equation z = 0 gives the expression of - 7 in t— by an infinite

series, that which arrives every time that, in the function z, the highest power of 1 7 is
multiplied by a rational and entire function of % In order to have then the expression
of ¥, ., in finite terms, it is necessary to resort to some artifices of analysis which we
are going to exhibit, by applying them to the following equation

1 1 b
_——— == c=0;
tty 1t
this equation gives
a
1 _ c+ i
t =0

hence .
1 (C + %)
x1 x
T ()

By expanding, with respect to the powers of the second member of this equation,
we will have an infinite series, that which W111 glve Yz,z, 10 an infinite series; in order
to prevent this disadvantage, we will put the preceding equation under this form

1 (%flwb)wl {c+ab+a(——b)}
e (k)

If we expand the second member of this equation, with respect to the powers of % —b,
we will have

1 1 o 1 Tt g —1) , (1 n?
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Let

V =ad",
Vv = z1ba®* + z(c+ ab)ax_l,
1 1
v = 7551(3’112 )anI + z12b(c + ab)a® "t + 71‘(131 5 )(c+ ab)*a*"?,
@ _ T D@1 —2) 5, zi(z—1) o1
|4 153 b a® + 12 xb*(c + ab)a
-1 -1 -2
+ 4 2 )b(c + ab)?a®? + sle-D@=2) (c+ ab)3a®3,

1.2 1.2.3

we will have

1 ] 1 :El—l 1 131—2
V(- - + V(= —p + V@ (= +
u tq tq tq

T = U (r141) (z1+2) (z+x1) )
ttglc +V(961)+V1 + 14 2+...+V7

b ()
1

now the equation

_——— == c=0 gives = = ,

ttl tl t T b c+ ab
hence

1 ] 1 rl—l

V<b> +V<1><b> +
t1 t1
u V( ) Vel /q Vv (@1+2) 1 2
— = U Z1 R — R e
ety N T (t a>+(c+ab)2 (t a) +
V(z-i—wl) 1 T
+ (c+ ab)® (t - a)

In order to pass again now from the generating functions to their corresponding vari-
ables, we will observe: 1° that the coefficient of tot(l) in ﬁ iS Yy 2,5 2° that this
b

T T
same coefficient in any term such as u (% — b) or ub” (% — 1) is equal to

Yo,r Yor—1  T(r—1)yor—2
bT et M > ’ ..
[ T 7o IR T }

and, consequently, equal to b" ' A" yg%ll, the differential characteristic ' /A correspond-
ing to the variability of x1, and this variable being necessarily supposed null after the

differentiations; 3 ° that this coefficient, in u (% — a)r, is a’”ATy;—f, the characteristic
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A corresponding to the variability of x, and this variable being necessarily supposed
null after the differentiations; we will have therefore with this condition

Yoo, = Vo IAml ygxfjl + V(l)ba:lfl 1 Aa:lfl Yo,z1 + V(Q)b:r172 1 Am172 Yo,z NI

b1 b1
I e
V(:cl) z, 2A2 z,
* Yoo + ctab " az * (c—l—ab)2a a®
V(I—Hxl) z Az Yx,0 .

)

—a
+ (c+ ab)* a®
this will be the complete integral of the equation
Yoilor+1 — Waor+1 — OYoi1,0, — Yooz, = 0,

and it is clear that this integral supposes that we know the first horizontal rank and the
first vertical rank of Table (Q) of article XVI.

XXII.

In order to clarify by an example the method which we have given previously in
order to integrate the equations in finite partial differences, we suppose that we have

the equation
1 2 1 2
O0=t|{-—-1) —ta|——-1) ,
t t1
L PR UG S
t 2 T2 2\ M)

l:ZquZ(l)
t

we will have

Let

)

Z and Z(M) being some function of ¢; and of x; we will determine these functions by
substituting successively into the preceding equation, in the place of 1, its two values;
that which gives

1 1 1/1 v 1 1 1/1
St — 4= (=t =Z+7ZW | — 4ty +-(——t
[21+2t1+2<t1 1” + g Tt )|

2\t

1 1 1/1 v 1 1. 1/1
[tl—&——(—tlﬂ =7+ 20 [+t1—2<t—t1)},

1

2 2ty 2\t 2t 2

whence it is easy to conclude

12_f
t7 ™
Z*12_ ,
t1—1
1 x
= —1t
1 ty 1
Z()_l1 =
L u
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hence

1 T
U t§—2_t{+u%—ﬁf
— =U — .
t* t2—1 t & —h

Presently, the coefficient of 750757{1 in t% iS Yz 2, » and, if we designate by T\, and 11\,

the coefficients of ¢* in the expansion of the functions %= and +*—, v being equal to

t2—1 i—1 ’
the infinite series Mg + A1t + Agt2 + - - -, we will have
u
1° Tyo, ez, —2 for the coefficient of "#7" in T
I GEY
. . L uty
2 Tyo, o421 for this coefficient in ERE
2
w1
° ” ttT
3 Hyl,z+xl T 1 ;
o h
T
4° Hyl,zl—z ? i 13 ;
o —t

We will have therefore
Yo,z = qyo,z+x1—2 - rIyO,xl—:E + Hyl,w+;ﬂ1 - Hyl,xl—wa
and, if we represent
Tyoutar—2 + Myt ata, by o+ 71)
and
7r—-[y0,ac1—x - Hyl,zl—:c by ’(ZJ(Z - xl)-
¢(x) and v (z) being two arbitrary functions of z, we will have

Yz,zy = d(r +21) +Y(x1 — 7).

This put, if we multiply the equation

2 2
o=t(3-1) ~u(;-1)
t t1

by u and if we pass again from the generating functions to their corresponding vari-
ables, we will have the equation in partial differences

Yotl,aer — 2Yoer T Yo—1l,00 = Yooi4+1 — 2oy + Yoo -1
its complete integral will be consequently

Yooy = O(x +x1) + (21 — ),

that which is clear moreover by the simple substitution, but I have belief that one would
not be angry to see how this integral is deduced from the preceding methods.
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We suppose now that, in the following Table

Yo,0, Yr0, Y20, Y30, Y40, -5 Yn-1,0, Yn,0,
Yo,1,  Yi,1, Y21, Y31, Y41, ceey Yn—11,  Yn,1,
Z) Yo0,2, Y1,2, Y2,2, Ys,2, Ya,2, ceey Yn—1,2, Yn,2,
Yo.3, Y13, Y23, Y33, Y43, .-y Yn-1,3, Yns3,
5 ey ceey ey cey ceey ey ceey
Yo,005 Yl,005 Y2,005 Y3,005 Y4005 -5 Yn—1,00) Yn,o0;

we know the first two horizontal ranks contained between the two extreme vertical
columns

Yo,0, Yo,1, Yo,25 ---5 Y0,00,

Yn,0, Yn,1y, Yn,2, -5 Yn,c0,

and that we know moreover all the terms of these two columns; we could determine all
the values of y,. .., which fall between these two columns, because, if we wish to form
the third horizontal rank, we will resume the equation

Yotz — 2Yz,zy + Yo—lor = Yoo 41 — Y20y T Yoz -1,

which is reduced to

Yz, x14+1 = yz—i-l,ml + Ye—1,21 — yat,ml—l;

by making 1 = 1, and successively x = 1, x =2, 2 =3, ...,z =n — 1, we will
have

Y1,2 = Y2,1 + Yo,1 — Y1,0,

Y2,2 = Y3,1 + Y1,1 — ¥2,0,

Y32 = Y41 +Y2,1 — Y30,

Yn—1,2 = Yn,1 T Yn—2,1 — Yn—1,0-

We will form in the same manner the fourth horizontal rank, and thus in sequence to
infinity; but, if we wished to determine the values of y, ,, which fall outside of Table
(Z), the preceding conditions would not suffice, and it would be necessary to join them
to others.

We seek presently the expression of y,, ., ; for this, we resume the integral

Yo,or = O(@ + 21) + ¥(21 — 2);

and we suppose that the second horizontal rank which determines one of the two arbi-
trary functions is such that we have (z1 — ) = ¢(z — x1), we will have

Yoy = O(x1 +2) + d(x — 31);

by making z1 = 0, we will have ¢(z) = ¥, 0, hence

1 1
Yo,21 = §ym+$1,0 + 5%0711,0'
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It is easy to see that this equation satisfies the proposed equation in partial differences;
but it is only a particular integral which corresponds to the case where the second
horizontal rank is formed from the first, by means of the equation

1
Yz, 1 = iya:JrLO + 5(%@71,0-

As much as z 4+ z; will be equal or less than n, and as x — x; will be positive or
null, we will have the value of 3, ., , by means of the first horizontal rank; but, when x4
increasing, x + x; will become greater than n and if z — x; will become negative, we
must determine the values of ;4,0 and of y,_;, o by means of the extreme vertical
columns. We suppose that all the terms of these two columns are zero and that if we
have yo ,, = 0 and y,, ,,, = 0; by making = 0 in the equation

1 1
Yo,z = iyaﬂ»zl,o + gy:vle,o'

we will have
yle,(] = _y:rl,O;

by making next x = n, we will have

Yn+x1,0 = —Yn—x,,0-

If we change, in this last equation, x1 into n + x1, we will have

Yon+x1,0 = —Y—21,0 = Yz1,0;

by changing next x; into n + z1, we will have

Y3n+z1,0 = Yntz1,0 = ~Yn—z21,05

whence we deduce generally
Y2rn+z1,0 = Yz1,0
and
y(27’+1)n+m1,0 = —Yn—=z,,0-

We may thus, by means of these two equations, continue the values of y,, o to infinity,
on the side of the positive values of x, and we will conclude from it those which cor-
respond to = negative, by means of the equation y_,, o = —¥,,0; thence results the
following construction.

If we represent the values of ¥, ¢ from 2 = 0 to = n, by the ordinates of the
angles of a polygon of which the abscissa is = and of which the two extremities A and
B lead to the points where x = 0 and x = n, we will carry this polygon from z = n to
x = 2n, giving a position to it contrary to the one which it had from z = 0 to z = n,
that is a position such that the parts which were above the axis of the abscissas is found
below, the point B of the polygon remaining moreover, in this second position, in the
same place as in the first, and the point A corresponding thus to the abscissa x = 2n;
we will place next this same polygon from x = 2n to x = 3n, by giving it a position
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contrary to the second and consequently like the first, in a manner that the point A
conserves, in this third position, the same place as in the second, and that thus the
point B corresponds to the abscissa z = 3n. By continuing to place thus this polygon
alternately above and below the axis of the abscissas, the ordinates drawn at the angles
of these polygons will be the values of y, o which correspond to z positive.

Similarly, we will place this polygon from x = 0 to z = —n, by giving it a position
contrary to that which it had from = 0 to « = n, the point A remaining moreover, in
this second position, in the same place as in the first; we will place next this polygon
from z = —n to x = —2n, by giving it a position contrary to the second, the point B
remaining moreover in the same place, and thus in sequence to infinity. The ordinates
of these polygons will represent the values of y,, o which correspond to = negative; we
will have next the value of y, ,, by taking the mean of the sum of the two ordinates
which correspond to the abscissas x + x1 and © — .

This geometric construction is general, whatever be the nature of the polygon which
we just considered; it will serve to determine all the values of y, ., contained from
2 =0tox = nand from z; = 0 to z; = oo, provided that we have ¥ ,, = 0 and
Yn,z, = 0, and that moreover the second horizontal rank of Table (Z) is such that we

have )
Yg,1 = iyx-u,o + 53/37—1,0

or, that which returns to the same,

1
Yzl — Yz,0 = §(yx+1,o = 2Y2.0 + Yo—1,0)-

We can, besides, be assured easily of the truth of the preceding results in some par-
ticular examples, by giving to n some particular values, by taking next some numbers
at will to form the first horizontal rank of Table (Z) and by forming the second rank by

means of the equation
1 1
Yz,1 = iym—&-xl,o + §yac—x1,0§

finally by supposing generally 3o ., = 0 and y, -, = 0; because, if by means of these
conditions and from the proposed equation in partial differences

Yz, x14+1 = Yx+1,24 + Ye—1,27 — Yz,21-1>

we form the other horizontal ranks of Table (Z), we will find that they will be the same
as those which result from the preceding construction.
We have, by that which precedes,

Yz, x14n = §yw+a:1+n,0 + §yxfn7m1,0§

moreover,

Yzr+x14n,0 = ~Yz—n—2x1,0
and

Yr—n—x1,0 = —Yntz,—2,05
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therefore
1 1

Yz x14n = 2yfc—n—x1,0 - §y71,—.’c+ac1,0 = —Yn—z,x;-

It follows thence that, in Table (Z), the (z1 + n)™th horizontal rank is the ' hori-
zontal rank taken with a contrary sign and in a reverse order, that is that the " term of
the (x1 + n)™ rank is the (n — 7)™ term of the = rank taken with a contrary sign.

We have next

1

Yz, x142n = §y2n+m+m170 + iyx—ml—Zn,O;

we have besides
Yan+az+z1,0 = Yz+a1,0
and
Yr—z1—2n,0 = ~Y2on+z,—2,0 = ~Yz1—2,0 = Yz—21,0,

hence
1

Yz, x142n = iym+1170 + Qym—rcl,o = Yz,215

whence it follows that the (27 + 2n)™ horizontal rank is exactly equal to the z$ rank.

We will consider presently the vibrations of a string of which the initial figure
is anything, but very little elongated from the axis of the abscissas; we name z the
abscissa, t the time, ¥, ; the ordinate of any point of the cord after time ¢; we imagine
moreover the abscissa x divided into an infinity of small parts equal to dz and which
we take for unity. This put, we will have, by the known principles of Dynamics,

0yt a’
at? = ooz Watre = 2ot + Y1),

a being a constant coefficient depending on the tension and on the thickness of the
string. If we make ¢t = 71, we will have dt = ‘%1, and y, ; will become a function
of x and of x;, which we will designate by v, ,,; now, the magnitude of dt being
arbitrary, we can suppose it such that the variation of x; is equal to that of =, which we

have taken for unity. The preceding equation will become thus

Yz, x14+1 — Qym,ml + Yzr,x1—-1 = Yo+1,29 — 2ym,m1 + Yr—1,215

x and 1 being some infinite numbers. This equation is the same as we just considered;
thus the geometric construction which we have given, by means of the polygon which
represents the value of y,, o from x = 0 to x = n, can be used in this case: the polygon
will be here the initial curve of the string; but, for this, we must suppose n equal to the
length of the string and to imagine it divided into an infinity of parts; it is necessary,
moreover, that the string be fixed at its two extremities, finally that we have yg ,, = 0
and y,, ,,, = 0; moreover the equation of condition

1
Yz,1 — Yo,0 = i(yxﬂ,o — 2Y2,0 + Yo—1,0)
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is changed into this one
aQy:r,O
0x2 '

ayaz ,0
ot

dt = %de
that which gives
891’,0
ot
Yz,0

now 2 57 1s the initial velocity of the string; this velocity must therefore be null at
the origin of the movement. Every time that these conditions will hold, the preceding
construction will give always the movement of the string, whatever be moreover its
initial figure, provided however that, in all its points, ¥/, 42,0 —2¥x+1,0 +¥a,0 1S infinitely
small of the second order, that is that two contiguous sides of the curve do not form at
all between them a finite angle. This condition is necessary in order that the differential
equation of the problem can subsist, and in order that this

3%:0 1
“dt = =(y, — 2u, i
ot 2(3/ +1,0 Yo,0 + Yo—1,0)
gives
8yw,0 _ 0;
ot

but besides it is evident, by that which precedes, that the initial figure of the string
can be discontinuous and composed of any number of arcs of a circle or of portions of
string which touch themselves.

We see easily that all the different situations of the string correspond to the hori-
zontal ranks of Table (Z), and, as the ranks which correspond to the values of z1, 1 +
2n, x1 + 4n, ... are the same, by that which precedes, there results from it that the
string will return to the same situation after time ¢, ¢ + 22, t + 42 . n being always
the total length of the string.

This analysis of the vibrating strings establishes, if I do not deceive myself, in an
incontestable manner the possibility of admitting some discontinuous functions into
this problem, and it seems to me that we can generally conclude that these functions
can be employed in all the problems which correspond to the partial differences, pro-
vided that they can subsist with the differential equations and with the conditions of the
problem. We can consider, indeed, any equation in infinitely small partial differences
as a particular case of an equation in partial finite differences, in which we suppose that
the variables become infinities: now, nothing being neglected in the theory of equations
in the finite differences, it is clear that the arbitrary functions of their integrals are not
at all subject to the law of continuity, and that the constructions of these equations by
means of the polygons have place whatever be the nature of these polygons. Now, when
we pass from the finite to the infinitely small, these polygons change themselves into
curves which, consequently, can be discontinuous: thus the law of continuity appears
unnecessary, neither in the arbitrary functions of the integrals of the equations in the
infinitely small partial differences, nor in the geometric constructions which represent
these integrals; we must observe only that, if the differential equation is of order n,
and if we name w its principal variable, z and ¢ being the two other variables, we must

not at all have a jump between two consecutive values of %, that is that the
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difference of this quantity must be infinitely small with respect to this quantity itself.
This condition is necessary in order that the proposed differential equation can subsist,
because every differential equation supposes that the differences of u of which it is
composed, divided by the respective powers of dz and of dt, are some finite quantities
and comparables among themselves; but nothing obliges to admit the preceding con-
dition relatively to the differences of u of the order n or of a superior order; we must
therefore subject the arbitrary functions of the integral to this that there is no jump
between two consecutive values of a difference of these functions less than n, and the
curves which represent them must be subject to a similar condition, such that it must
not at all have a jump between two consecutive tangents if the equation is differentiable
of second order, or between two consecutive osculating radii if it is differentiable of the
third order, and thus in sequence. For example, in the problem of the vibrating strings
which we just analyzed, and which lead to a differential equation of the second order,
it is necessary that the curves of which we make use in order to construct it are such
that two contiguous sides do not form between them a finite angle: now, this is that
which will take place in the construction which we have given if the initial figure of the
string is such that this condition is fulfilled; because, by putting it alternately above and
below the axis of the abscissas, as we have prescribed, the infinite curve which results
from it satisfies in all its extent the same condition.

The sole case which seems to make exception to that which we just said is the
one in which the integral contains arbitrary functions and their differences; because,
by substituting it into the differential equation in order to satisfy it, we introduce the
differences of the arbitrary functions of an order superior to n, that which supposes that
the law of continuity extends beyond the differences of order n — 1; but we must then
consider as the true arbitrary functions of the integral the most elevated differences of
these functions, and to regard all the inferior differences as their successive integrals,
in consideration of which the previously given rule on the continuity of some arbitrary
functions and of their differences will subsist in its entirety. We can even present it in
a simpler manner, by observing that there is no jump at all between two consecutive
values of the integral of any arbitrary and discontinuous function; because, by naming
¢(s) this function, two consecutive values of its integral [ ds¢(s) differs between
them only by the quantity ds¢(s), which could be always infinitely small, when even
there could be a jump between two consecutive values of ¢(s). The preceding rule can
therefore be reduced to the following:

If the integral of an equation in partial differences of order n contains the v dif-
ference of an arbitrary function of s, we can, in place of the (n + )" difference of this
function, divided by ds™", employ any function discontinuous in s.

When, in the problem of the vibrating strings, the initial figure of the string is such
that two of these contiguous sides form a finite angle, for example when it is formed
by the joining of two straight lines, it seems to me that geometrically the preceding
solution cannot be admitted; but, if we consider physically this problem and all others
of this type, such as that of the sound, it appears that we can apply the construction
which we have given, even in the case where the string would be formed by a system
of many straight lines: because we see, a priori, that its movement must differ very
little from the one which it takes by supposing that, at the points where these lines
meet themselves, there were some small curves which permit using this construction.
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XXIII.

We can still apply the calculus of the generating functions to the integration of
equations in partial differences, by finite parts and by infinitely small parts; for this, we
will consider the equation

Y,z

0= aYz,z; + bAya:,xl - O

the finite characteristic A corresponding to the variable z, of which the difference is
unity, and the characteristic d corresponding to the variable x1, of which the difference
is consequently dx; .

The generating equation of the preceding is

1 1 1
O=a+b(>—1)——[— -1
a+ <t > d.’l?l (ttli$1 )7

whence we deduce, to the infinitely small nearly,

11 1 1
t*  (bdx1)* |9 (1 + aday — bday) '

Now, if we name y,, ., the coefficient of ¢*¢7 in u, the coefficient of tot‘fl in t% will be
Yu,z, 5 this same coefficient in

1 x
u | -1
t7" (1 + adxy — bdzy)

will be

Y.z, + 2d1 . Yo,z, + (@ — 1)dxy
(1+ade; —bdzy) 3™ (1+adwy — bday)do 7=
z(x—1) Yo,z, + (x — 2)dxy
1.2 (1+ad1'1 7bdl'1)‘lel+x_2
= (1+adz; — bdz;) ™ d® Yo.e1 _—
(1+adry —bdxy) @

(1+adzy — bdzl)d%

Now we have .
(1+adr; —bdxy)@r = o0

e being the number of which the hyperbolic logarithm is unity; the coefficient of $9¢¥

x
inu |- L — 1| will be therefore
ty 1 (1+adz;—bdx,)

6(a7b)x1dz (yoﬂcle(a*b)ml) :
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hence, we will have

B 6(a7b)931 d® (e(a—b)ﬂmyO’Il)
Yoo = "0 dz?

or, more simply,
e(afb)acl dx(,ZS(J?l)
Yoo = "0 dz?
¢(x1) being an arbitrary function of x.
We can integrate, by the same process, the general equation

2
0 Yz ay .
ox? ’

0= Anypay +asn— 1 Pms | pon—s
81‘1

its generating equation is

2
1 "o (1 i b /1 2l
0= (--1) +—(=-1 [ UG N I

By naming therefore «, a1, ao the n roots of the equation

0=0v"+av" L+ b" 24" 34

we will have the n partial equations

1 « 1
— =1 — | — -1
e ()
1 aq 1
=14 — -1
(),

the first gives

1 a®

1 xr
— = -1 .
v (dry)® Lf“’l (1— dz) ]

@

T
Now the coefficient of 144" in £ iS Yy o, ; this same coefficient in [t;"l(lld‘”) — 1}

is “
Yoo, Txdry LYo + (z —1)dxy
-L dx ;T1+a: dx
(1dmy® 0=t F
z(@—1) Yoz, +(x—2)drr
1.2 (1 _ %)%JrzfQ

(03

B R T
(1_%);@—11 ,T1 )
«

)%Jrzfl
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since

we will have therefore

or, more simply,
o~z d*P(z1)

Yoy — QX € T
dzy

¢(x1) being an arbitrary function of x;.
It follows thence that, if we designate by ¢1(x1), d2(x1), ¢3(z1), ... some other
arbitrary functions of x, the complete expression y, will be

_z1 d£¢($1) _Z1 d”czﬁl(xl) o =L d$¢2(.€(]1)
Yz,zq =a'e @ W-{-a;fe alw—i—age "2w+"'

XXIV.

Theorems on the expansion of functions in two variables into series.

If we apply to the functions in two variables the method exhibited in articles X
and XI, we will have, in the expansion of these functions into series, some theorems
analogous to those in which we are arrived in these two articles. We suppose that u is
equal to the infinite series

Yo,0 + y1,0t + y2,oL‘2 + y3,0t3 + -
+ Yo,1t1 +y1,1tat + y2,1t1t2 + e
and if we designate by the characteristic A the finite difference of y, ,,, taken by
making z and z; vary at the same time, the generating function of Ay, ,, will be
n
u ( L_ 1) ; whence it follows that the function A"y, ., will be u (% - 1) . Now
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we have
1 " 1 1 "
— 1) = 14+-—-1 1+——-1)—-1] ;
(1) =l () (1) 1]

hence, if we designate by the characteristic /A, the finite difference of ¥, ,,, taken
by making only = vary, and by the characteristic A5 that difference taken by making
only x; vary, we will have, by passing again from the generating functions to the
corresponding variables,

A"Yyzy = [(1+ Alyw,wl)(l + A2yw,x1) =17,
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provided that, in the expansion of the second member of this equation, we apply to the
characteristics Ay and A, the exponents of the powers of Ay, 5, and Aoy .

By changing n into —n, we will be assured easily, by reasoning analogous to that
of article X, that the preceding equation will become

1
[(1+ Alyw,xl)(l + AZyar,xl) - 1]717

provided that, in the expansion of the second member of this equation, we change the

negative differences into integrals.
n

Znyx,ml =

It is clear that u (ti, - — 1| is the generating function of the nth finite difference
1

of Yz »,, when x varies with 4, and when 2 varies with 7;; now we have

1 " 1 i 1 a "
u< —1> =u (1—1——1) (1+—1> -1| ;
it t 1

therefore, if we designate by the characteristic * A\ the finite differences, and by the
characteristic 'Y the finite integrals, when x varies with ¢ and when x; varies with
11, we will have, by passing again from the generating functions to the corresponding
variables,

1Anyz,x1 = [(1 + Alyz,xl)l(l + A2y:}c¢zl)“ - ]-]nv

1
(1 + DYz, ) (L4 DoYee, ) — 1’
provided that, in the expansion of the second members of these equations, we apply to
the characteristics Ay and Ay the exponents of the powers of Ay, o, and Aoyy .,
and that we change the negative differences into integrals.

The two preceding equations yet hold, by supposing that, in the differences A1y, .
and Asy, »,, « and x; instead of varying from unity, vary from any quantity w; we
must solely observe that, in the difference ! AYy 2y, ¢ will vary from oo and zq will
vary from ¢;w; now, if we suppose o infinitely small, the differences Ay, ,, and
ANoyg o, Will be changed: the first into da:aygifl and the second into dx; 8%””7’1”. More-
over, if we make ¢ and ¢, infinitely great and if we suppose ¢ dx = o and i 1dx; = oy,
we will have

1ywn
X ey =

Oyz,zy

. 9 dx
(1 =+ Alyw,xl)l = (1 + dx%) — ¥ o=

e being the number of which the hyperbolic logarithm is unity; we will have similarly

OYz,zq

(1 + Any,ml )il = 6041 921 5

hence

yz,x yz,x n
T |
Yz,0y = )

Znyx,rl =




x varying from « and z; varying from ¢ in the two first members of these equations.
If, instead of supposing w infinitely small, we suppose it finite and 7 infinitely small
and equal to dz; if we suppose, moreover, 77 infinitely small and equal to dz;, we will
have
(]- + Alyx,rl)i = (1 + Alyz,ml)dw =1+dz IOg(]. + Alyx,zl)~

We will have similarly
(14 Doy ) =14 daylog(1 + Doya s, );
moreover A"y, ... is changed into d"y, ., ; hence
d"Yo 2y = {[1+ drlog(l + Diysq,)|[1 + drylog(l + Aoye 2,)] — 13"
or, more simply,
A" Yz 2, = [dxlog(l + AYs e, ) + doy log(1 4+ Aoys o0 )]™

We can obtain in this manner an infinity of other similar formulas; but it suffices to
have exhibited the method for arriving to them.

All that which we have said on the functions of two variables can be applied equally
to those of three or of a greater number of variables, we will not insist further on this
object.
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