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ON THE LAWS OF PROBABILITY WHICH RESULT FROM THE INDEFINITE
MULTIPLICATION OF EVENTS

p being the probability of the arrival of a simple event at each trial, and 1−p that of its non-arrival,
to determine the probability that, out of a very great number n of trials, the number of times
that the event will take place will be comprehended within some given limits. Solution of the
problem. The the most probable number of times, is np. Expression of the probability that
this number of times will be comprehended within the limits np± l. The limits±l remaining
the same, this probability increases with the number of trials n: the probability remaining the
same, the ratio of the interval 2l of the limits to the number n, is tightened when n increases,
and, in the case of n infinite, this ratio becomes null, and the probability is changed into
certitude. The solution of the preceding problem serves further to determine the probability
that the value of p, supposed unknown, is comprehended within some given limits, when,
out of a very great number n of trials, we know the number i of events corresponding to p
which arrived: p is very nearly i

n , and generally when, in a trial, there must arrive any one of
many simple events, the respective probabilities of these events are very nearly proportional
to the number of times that they will arrive in a very great number n of trials. P being the
probability of the arrival of an event composed of two simple events, of which p and 1 − p
are the respective probabilities, and 1 − P being the probability of the non-arrival of this
composite event; if out of a very great number n of arrivals and of non-arrivals of the same
event, we know the number i of these arrivals, we have the probability that the value of P will
be comprehended within some given limits, and, as P is a known function of p, we conclude
from it the probability that the value of p will be comprehended within some given limits.No

16.

*Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier University,
Cincinnati, OH. July 26, 2021
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An urn A containing a very great number n of white and black balls; at each drawing, we ex-
tract one from it that we replace with a black ball; we demand the probability that, after r
drawings, the number of white balls will be x.

The solution of the problem depends on a linear equation in partial finite differences of the first
order, with variable coefficients. Reduction of this equation to an equation in the infinitely
small partial differences. Integration of this last equation. Application of the solution, to the
case where the urn is originally filled in this manner: we project a right prism of which the
base being a regular polygon of p + q sides, is narrow enough in order that the prism never
falls on it; on the p + q lateral faces, p are white and q are black and we put, into urn A, at
each projection, a ball of the color of the face on which the prism falls again.

Two urns A and B each contain a very great number n of white and black balls, the number of
whites being equal to the one of the blacks, in the totality 2n of balls; we draw at the same
time a ball from each urn, and we place again into one urn the ball extracted from the other.
By repeating this operation any number r times, we demand the probability that there will be
x white balls in urn A.

The problem depends on a linear equation in the partial finite differences of the second order, with
variable coefficients. Reduction of this equation; to an equation in the infinitely small partial
differences of the second order. Integration of this last equation, by means of a definite
integral. Development of this integral into series. Determination of the constants of the
series, by means of its initial value. Analytic theorems relative to this object. Application of
the solution, in the case where urn A is originally filled, as in the preceding problem. Mean
value of the white balls in each urn, after r drawings. General expression of this value, in
the case where we have a number e of urns disposed circularly and each containing a great
number n of balls, some white and the others black, each drawing consisting in extracting at
the same time, one ball from each urn and placing it again into the following, by departing
from one of them, in a determined sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . No 17.
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§16. In measure [275]as events are multiplied, their respective probabilities are developed
more and more: their mean results and the profits or the losses which depend on them,
converge toward some limits which they approach with probabilities always increasing.
The determination of these increases and of these limits, is one of the most interesting and
most delicate parts of the analysis of chances.

Let us consider first the manner in which the possibilities of two simple events of which
one alone must arrive at each trial,1 is developed when we multiply the number of trials. It
is clear that the event of which the facility is greatest, must probably arrive more often in
a given number of trials; and we are carried naturally to think that by repeating the trials a
very great number of times, each of these events will arrive proportionally to its facility, that
we will be able thus to discover by experience. We are going to demonstrate analytically
this important theorem.

We have seen in §6 that if p and 1 − p are the respective probabilities of two events a
and b; the probability that in x+ x′ trials, the event a will arrive x times and the event b, x′

times, is equal to
1.2.3 . . . (x+ x′)

1.2.3 . . . x.1.2.3 . . . x′
px(1− p)x′ ;

this is the (x′ + 1)st term of the binomial [p + (1 − p)]x+x
′ . Let us consider the greatest

of these terms that we will designate by k. The anterior [276]term will be kp
1−p ·

x′

x+1
, and the

following term will be k 1−p
p
· x
x′+1

. In order that k be the greatest term, it is necessary that
we have at the same time

p

1− p
<
x+ 1

x′
>

x

x′ + 1
;

it is easy to conclude from it that if we make x+ x′ = n, we will have

x < (n+ 1)p > (n+ 1)p− 1;

thus x is the greatest whole number comprehended within (n+ 1)p; by making therefore

x = (n+ 1)p− s,

that which gives

p =
x+ s

n+ 1
, 1− p =

x′ + 1− s
n+ 1

,
p

1− p
=

x+ s

x′ + 1− s
,

s will be less than unity. If x and x′ are very great numbers, we will have very nearly,

p

1− p
=
x

x′
,

that is that the exponents of p and of 1 − p, in the greatest term of the binomial, are quite
nearly in the ratio of these quantities; so that of all the combinations which can take place

1Herein trial translates coup.
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in a very great number n of trials, the most probable is that in which each event is repeated
proportionally to its probability.

The lth term, after the greatest, is

1.2.3 . . . n

1.2.3 . . . (x− l).1.2.3 . . . (x′ + l)
px−l(1− p)x′+l.

We have, by §32 of the first Book,

1.2.3 . . . n = nn+
1
2 c−n
√

2π

{
1 +

1

12n
+ etc.

}
,

that which gives

1

1.2.3 . . . (x− l)
= (x− l)l−x−

1
2
cx−l√

2π

{
1− 1

12(x− l)
− etc.

}
, [277]

1

1.2.3 . . . (x′ + l)
= (x′ + l)−x

′−l− 1
2
cx
′+l

√
2π

{
1− 1

12(x′ + l)
− etc.

}
.

Let us develop the term (x− l)l−x− 1
2 . Its hyperbolic logarithm is(

l − x− 1
2

) [
log x+ log

(
1− l

x

)]
;

now we have

log

(
1− l

x

)
= − l

x
− l2

2x2
− l3

3x3
− l4

4x4
− etc.;

we will neglect the quantities of order 1
n

, and we will suppose that l2 does not surpass at all
the order n; then we will be able to neglect the terms of order l4

x3
, because x and x′ are of

order n. We will have thus(
l − x− 1

2

) [
log x+ log

(
1− l

x

)]
=

(
l − x− 1

2

)
. log x+ l +

l

2x
− l2

2x
− l3

6x2
,

that which gives, by passing again from the logarithms to the numbers,

(x− l)l−x−
1
2 = cl−

l2

2xxl−x−
1
2

(
1 +

l

2x
− l3

6x2

)
;

we will have similarly

(x′ + l)−l−x
′− 1

2 = c−l−
l2

2x′ x′−l−x
′− 1

2

(
1− l

2x′
+

l3

6x′2

)
.

We have next by that which precedes, p = x+s
n+1

, s being less than unity; by making therefore
p = x−z

n
, z will be contained within the limits x

n+1
and −n−x

n+1
, and consequently it will be,
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setting aside the sign, below unity. The value of p gives 1− p = x′+z
n

; we [278]will have by the
preceding analysis,

px−l(1− p)x′+l =
xx−lx′x

′+l

nn

(
1 +

nzl

xx′

)
;

thence we deduce

1.2.3 . . . n

1.2.3 . . . (x− l).1.2.3 . . . (x′ + l)
px−l(1− p)x′+l

=

√
nc−

nl2

2xx′

√
π
√

2xx′

(
1 +

nzl

xx′
+
l(x′ − x)

2xx′
− l3

6x2
+

l3

6x′2

)
.

We will have the term anterior to the greatest term, and which is extended from it at the
distance l, by making l negative in this equation; by uniting next these two terms, their sum
will be

2
√
n

√
π
√

2xx′
c−

nl2

2xx′ .

The finite integral ∑ 2
√
n

√
π
√

2xx′
c−

nl2

2xx′ ,

taken from l = 0 inclusively, will express therefore the sum of all the terms of the binomial
[p+ (1− p)]n, comprehended between the two terms, of which the one has px+l for factor,
and the other has px−l for factor, and which are thus equidistant from the greatest term;
but it is necessary to subtract from this sum, the greatest term which is evidently contained
twice.

Now, in order to have this finite integral, we will observe that we have, by §10 of the
first Book, y being function of l,

∑
y =

1

c
dy
dl − 1

=

(
dy

dl

)−1
− 1

2

(
dy

dl

)0

+
1

12

dy

dl
+ etc.;

whence we deduce by the preceding section,∑
y =

∫
y dl − 1

2
y +

1

12

dy

dl
+ etc. + constant.

y being [279]here equal to 2
√
n√

π
√
2xx′

c−
nl2

2xx′ , the successive differentials of y acquire for factor nl
2xx′

and its powers; thus l being supposed to not be able to be more than order
√
n, this factor

is of order 1√
n

, and consequently its differentials divided by the respective powers of dl,
decrease more and more; by neglecting therefore, as we have done previously, the terms of
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order 1
n

, we will have, by starting with l the two finite and infinitely small integrals, and
designating by Y the greatest term of the binomial,∑

y =

∫
ydl − 1

2
y +

1

2
Y.

The sum of all the terms of the binomial [p + (1 − p)]n contained between the two terms
equidistant from the greatest term by the number l, being equal to

∑
y − 1

2
Y , it will be∫

ydl − 1

2
y;

and if we add there the sum of these extreme terms, we will have for the sum of all these
terms, ∫

ydl +
1

2
y.

If we make

t =
l
√
n√

2xx′
,

this sum becomes
2√
π

∫
dt c−t

2

+

√
n

√
π
√

2xx′
c−t

2

. (o)

The terms that we have neglected being of the order 1
n

, this expression is so much more
exact, as n is greater: it is rigorous, when n is infinity. It would be easy, by the preceding
analysis, to have regard to the terms of order 1

n
, and of the superior orders.

We have, by that which precedes, x = np+ z, z being a number smaller [280]than unity; we
have therefore

x+ l

n
− p =

l + z

n
=
t
√

2xx′

n
√
n

+
z

n
;

thus formula (o) expresses the probability that the difference between the ratio of the num-
ber of times that the event a must arrive, to the total number of trials, and the facility p of
this event, is comprehended within the limits

±t
√

2xx′

n
√
n

+
z

n
. (l)

√
2xx′ being equal to

n

√
2p(1− p) +

2z

n
(1− 2p)− 2z2

n2
;

we see that the interval comprehended between the preceding limits is of order 1√
n

.
If the limit of t, that we will designate by T , is supposed invariable, the probability de-

termined by the function (o), remains very nearly the same; but the interval comprehended
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between the limits (l), diminishes without ceasing in measure as the trials are repeated, and
it becomes null, when their number is infinite.

This interval being supposed invariable; when the events are multiplied, T increases
without ceasing, and quite nearly as the square root of the number of trials. But when T is
considerable, formula (o) becomes, by §27 of the first Book,

1− c−T
2

2T
√
π

1

1 +
q

1 +
2q

1 +
3q

1 + etc.

+
c−T

2√
2nπ

[
p(1− p) + z

n
(1− 2p)− z2

n2

] ,
q being equal to 1

2T 2 . When we make T increase, c−T 2 diminishes with an extreme [281]rapidity,
and the preceding probability approaches rapidly to unity to which it becomes equal, when
the number of trials is infinite.

There are here two sorts of approximations: one of them is relative to the limits taken on
both sides of the facility of the event a; the other approximation is related to the probability
that the ratio of the arrivals of this event, to the total number of trials, will be contained
within these limits. The indefinite repetition of the trials increases more and more this
probability, the limits remaining the same: it narrows more and more the interval of these
limits, the probability remaining the same. Into infinity, this interval becomes null, and the
probability is changed into certitude.

The preceding analysis unites to the advantage of demonstrating this theorem, the one
to assign the probability that in a great number n of trials, the ratio of the arrivals of each
event will be comprehended within some given limits. Let us suppose, for example, that
the facilities of the births of boys and of girls are in the ratio of 18 to 17, and that there are
born in one year, 14000 infants; we demand the probability that the number of boys will
not surpass 7363, and will not be less than 7037.

In this case, we have

p =
18

35
, x = 7200, x′ = 6800, n = 14000, l = 163;

formula (o) gives quite nearly 0, 994303 for the sought probability.
If we know the number of times that out of n trials, the event a arrived; formula (o)

will give the probability that its facility p supposed unknown, will be comprehended within
the given limits. In fact, if we name i this number of times, we will have, by that which
precedes, the probability that the difference i

n
− p will be comprehended within the limits

±T
√
2xx′

n
√
n

+ z
n

; consequently, we will have the probability that pwill be comprehended within
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the limits
i

n
∓ T
√

2xx′

n
√
n
− z

n
.

The [282]function T
√
2xx′

n
√
n

being of the order 1√
n

, we are able by neglecting the quantities of order
1
n

, to substitute there i instead of x, and n − i instead of x′; the preceding limits become
thus, by neglecting the terms of order 1

n
,

i

n
∓
T
√

2i(n− i)
n
√
n

;

and the probability that the facility of the event a is comprehended within these limits, is
equal to

2√
π

∫
dt c−t

2

+

√
nc−T

2

√
π
√

2i(n− i)
. (o′)

We see thus that in measure as the events are multiplied, the interval of the limits is nar-
rowed more and more, and the probability that the value of p falls within these limits,
approaches more and more unity or certitude. It is thus that the events, in being developed,
make known their respective probabilities.

We arrive directly to these results, by considering p as a variable which can be extended
from zero to unity, and by determining, after the observed events, the probability of its
diverse values, as we will see it when we will treat the probability of causes, deduced from
observed events.

If we have three or a greater number of events a, b, c, etc., of which one alone must
arrive at each trial; we will have, by that which precedes, the probability that in a very
great number n of trials, the ratio of the number x of times that one of these events, a for
example, will arrive, to the number n, will be comprehended within the limits p ± α, α
being a very small fraction; and we see that in the extreme case of the number n infinite,
the interval 2α of these limits can be supposed null, and the probability can be supposed
equal to certitude, so that the numbers of arrivals of each event will be proportional to their
respective facilities.

Sometimes the events, instead of making known directly the limits of the value of p,
give those of a function of this value; [283]then we conclude from it the limits of p, by the
resolution of equations. In order to give a quite simple example of it, let us consider two
players A and B, of whom the respective skills are p and 1− p, and playing together with
this condition, that the game is won by the one of the two players who, out of three trials,
will have vanquished twice his adversary, the third trial not being played, as useless, when
one of the players is vanquished in the first two trials.

The probability of A to win the game, is the sum of the first two terms of the binomial
[p + (1 − p)]3; it is consequently equal to p3 + 3p2(1 − p). Let P be this function; by
raising the binomial P + (1− P ) to the power n, we will have, by the preceding analysis,
the probability that, out of the number n of games, the number of games won by A will be
comprehended within the given limits. It suffices for that to change p into P in formula (o).
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If we name i the number of games won by A, formula (o′) will give the probability that
P will be comprehended within the limits

i

n
±
T
√

2i(n− i)
n
√
n

.

Let therefore p′ be the real and positive root of the equation

p3 + 3p2(1− p) =
i

n
;

by designating by p′ ∓ δp the limits of p, the corresponding limits of P will be very nearly
3p′2 − 2p′3 ∓ 6p′(1− p′)δp; by equating these limits to the preceding, we will have

δp =
T
√

2i(n− i)
6p′(1− p′)n

√
n

;

thus formula (o′) will give the probability that p will be comprehended within the limits

p′ ∓
T
√

2i(n− i)
6p′(1− p′)n

√
n
.

The number n of games does not determine the number of trials, since we are able to
have some games of two trials, and others of three [284]trials. We will have the probability
that the number of games of two trials, will be comprehended within the given limits, by
observing that the probability of a game with two trials, is p2 + (1− p)2; Let us designate
this function by P ′. By elevating the binomial P ′+(1−P ′) to the power n, formula (o) will
give the probability that the number of games of two trials will be comprehended within the
limits nP ′ ± l; now the number of games of two trials being nP ′ ± l, the number of games
with three trials will be n(1 − P ′) ∓ l; the total number of trials will be therefore 3n −
nP ′ ∓ l; formula (o) will give therefore the probability that the number of trials will be
comprehended within the limits

2n(1 + p− p2)∓ T
√

2nP ′(1− P ′).

§17. Let us consider an urn A containing a very great number n of white and black
balls, and let us suppose that at each drawing, we draw one ball from the urn, and that we
replace it with a black ball. We demand the probability that after r drawings, the number
of white balls will be x.

Let us name yx,r this probability. After a new drawing, it becomes yx,r+1. But in order
that there are x white balls after r + 1 drawings, it is necessary that there are either x + 1
white balls after the drawing r, and that the following drawing makes a white ball exit, or x
white balls after the drawing r, and that the following drawing makes a black ball exit. The
probability that there will be x+1 white balls after r drawings, is yx+1,r, and the probability
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that then the following drawing will make a white ball exit, is x+1
n

; the probability of the
composite event is therefore x+1

n
yx+1,r; this is the first part of yx,r+1. The probability that

there will be x white balls after the drawing r, is yx,r; and the probability that then there
will exit a black ball, is n−x

n
, because the number of black balls in the urn is n − x; the

probability of the composite event is therefore n−x
n
yx,r; this is the second part of yx,r+1.

Thus we have
yx,r+1 =

x+ 1

n
yx+1,r +

n− x
n

yx,r.

If we make
x = nx′, r = nr′, yx,r = y′x′,r′ ,

this [285]equation becomes

y′
x′,r′+ 1

n
=
(
x′ + 1

n

)
y′
x′+ 1

n
,r′

+ (1− x′)y′x′,r′ ;

n being supposed a very great number, we are able to reduce into convergent series yx,r′+ 1
n

and yx′+ 1
n
,r′; we will have therefore, by neglecting the squares and the superior powers of

1
n

,
1

n
·
dy′x′,r′

dr′
=
x′

n
·
dy′x′,r′

dx′
+

1

n
y′x′,r′ ;

the integral of this equation in partial differences is

y′x′,r′ = cr
′
φ(x′cr

′
),

φ(x′cr
′
) being an arbitrary function of x′cr′ , that it is necessary to determine through the

value of y′x,0.
Let us suppose that urn A has been replenished in this manner. We project a right prism

of which the base being a regular polygon of p+q sides, is narrow enough so that the prism
never falls on it. On the p + q lateral faces, p are white and q are black, and we put into
urn A, at each projection, a ball of the color of the face on which the prism falls. After n
projections, the number of white balls will be quite nearly, by the preceding section, np

p+q
,

and the probability that it will be np
p+q

+ l, is, by the same section,

p+ q√
2npqπ

c−
(p+q)2l2

2npq .

If we make

x =
np

p+ q
+ l,

(p+ q)2

2pq
= i2,

this function becomes
i√
πn

c−
i2

n (x− np
p+q )

2

;

this [286]is the value of yx,0, or of y′x′,0; but the preceding value of y′x′,r′ , gives

yx,0 = φ
(x
n

)
;
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we have therefore
φ
(x
n

)
=

i√
nπ

c−i
2n( xn−

p
p+q )

2

;

hence,

y′x′,r′ =
icr
′

√
nπ

c
−i2n

(
xcr
′

n
− p
p+q

)2

whence we deduce

yx,r =
ic

r
n

√
nπ

c−
i2

n (xc
r
n− np

p+q )
2

.

The most probable value of x is that which renders xc
r
n − np

p+q
null, and consequently it is

equal to
np

(p+ q)c
r
n

;

the probability that the value of x will be contained within the limits

np

(p+ q)c
r
n

± µ
√
n

c
r
n

,

is
2

∫
i dµ√
π
c−i

2µ2 ,

the integral being taken from µ = 0.
Let us seek now the mean value of the number of white balls contained within urn A,

after r drawings. This value is the sum of all the possible numbers of white balls, multiplied
by their respective probabilities; it is therefore equal to

2np

(p+ q)c
r
n

∫
i dµ√
π
c−i

2µ2 ,

the [287]integral being taken from µ = 0 to µ =∞. This value is thus

np

(p+ q)c
r
n

;

consequently, it is the same as the most probable value of x.
Let us consider now two urns A and B containing each the number n of balls, and let

us suppose that in the total number 2n of balls, there are as many white as black. Let us
imagine that we draw at the same time, one ball, from each urn, and that next one puts into
one urn, the ball extracted from the other. Let us suppose that we repeat this operation, any
number r times, by agitating at each time the urns, in order to well mix the balls; and let
us seek the probability that after this number r of operations, there will be x white balls in
urn A.
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Let zx,r be this probability. The number of possible combinations in r operations, is
n2r; because at each operation, the n balls of urn A are able to be combined with each of n
balls from urn B, that which produces n2 combinations; n2rzx,r is therefore the number of
combinations in which it is possible to have x white balls in urn A after these operations.
Now, it can happen that the (r + 1)st operation makes a white ball exit from urn A, and
makes a white ball return; the number of cases in which this can arrive, is the product of
n2rzx,r by the number x of white balls of urn A, and by the number n − x of white balls
which must be then in urn B, since the total number of white balls of the two urns, is n.
In all these cases, there remains x white balls in urn A; the product x(n − x)n2rzx,r is
therefore one of the parts of n2r+2zx,r+1.

It can happen further that the (r + 1)st operation makes exit and return into urn A, a
black ball, that which conserves in this urn x white balls. Thus n − x being, after the rth

operation, the number of black balls of urn A, and x being the one of black balls of urn B,
(n− x)xn2rxx,r is further a part of n2r+2zx,r+1.

If there are x − 1 white balls in urn A after the rth operation, and [288]if the operation
following makes a black ball exit from it, and makes a white ball return there; there will be
x white balls in urn A after the (r + 1)st operation; the number of cases in which that can
happen, is the product of n2rzx−1,r by the number n − x + 1 of the black balls of urn A
after the rth drawing, and by the number n− x + 1 of white balls of urn B, after the same
operation; (n− x+ 1)2n2rzx−1,r is therefore again a part of n2r+2zx,r+1.

Finally, if there are x+1 white balls in urnA after the rth operation, and if the operation
following makes a white ball exit from it, and makes a black ball return there; there will
be again, after this last operation, x white balls in the urn. The number of cases in which
that can arrive, is the product of n2rzx+1,r by the number x+ 1 of white balls of urn A, and
by the number x + 1 of black balls of urn B after the rth operation; (x + 1)2n2rzx+1,r is
therefore further part of n2r+2zx,r+1.

By reuniting all these parts, and by equating their sum to n2r+2zx,r+1, we will have the
equation in partial finite differences

zx,r+1 =

(
x+ 1

n

)2

zx+1,r +
2x

n

(
1− x

n

)
zx,r +

(
1− x− 1

n

)2

zx−1,r.

Although this equation is in differences of the second order with respect to the variable
x, however its integral contains only one arbitrary function which depends on the probabil-
ity of the diverse values of x in the initial state of urn A. In fact, it is clear that if we knew
the values of zx,0 corresponding to all the values of x, from x = 0 to x = n; the preceding
equation will give all the values of zx,1, zx,2, etc., by observing that the negative values of
x being impossible, zx,r is null when x is negative.

If n is a very great number, this equation is transformed into an equation in partial

12



differences that we obtain thus. we have then, very nearly,

zx+1,r = zx,r +

(
dzx,r
dx

)
+

1

2

(
d2zx,r
dx2

)
,

zx−1,r = zx,r −
(
dzx,r
dx

)
+

1

2

(
d2zx,r
dx2

)
,

zx,r+1 = zx,r +

(
dzx,r
dx

)
.

Let [289]

x =
n+ µ

√
n

2
, r = nr′, zx,r = U ;

the preceding equation in the partial finite differences will become, by neglecting the terms
of order 1

n2 , (
dU

dr′

)
= 2U + 2µ

(
dU

dµ

)
+

(
d2U

dµ2

)
.

In order to integrate this equation which, as we are able to be assured by the method that I
have given for this object, in the Mémoires de l’Académie des Sciences, of the year 1773,2

is integrable in finite terms, only by means of definite integrals, let us make

U =

∫
φ dtc−µt,

φ being a function of t and of r′. We will have

2µ

(
dU

dµ

)
= 2c−µttφ− 2

∫
c−µt(φ dt+ tdφ),(

ddU

dµ2

)
=

∫
c−µtt2φ dt;

the equation in the partial differentials in U , become thus∫
c−µt

(
dU

dr′

)
dt = 2c−µttφ+

∫
c−µtdt

[
t2φ− 2t

dφ

dt

]
.

By equating between them the terms affected of the
∫

sign, we will have the equation in
the partial differentials (

dφ

dr′

)
= t2φ− 2t

(
dφ

dt

)
.

2This must refer to his “Recherches sur l’integration des équations différentielles aux différences finies,
et sur leur usage dans la théorie des hasards.” Mémoires de l’Académie royale des Sciences de Paris (Savants
étrangers) [?].

13



The term outside the
∫

sign, equated to zero, will give for the equation in the limits of the
integral,

0 = tφc−µt.

The integral of the preceding equation in the partial differentials of φ, is

φ = c
1
4
t2ψ

(
t

c2r′

)
,

ψ
(

t
c2r′

)
[290]being an arbitrary function of t

c2r′
; we have therefore

U =

∫
dtc−µt+

1
4
t2ψ

(
t

c2r′

)
.

Let there be
t = 2µ+ 2s

√
−1,

the expression of U will take this form,

U = c−µ
2

∫
ds c−s

2

Γ

(
s− µ

√
−1

c2r′

)
. (A)

It is easy to see that the preceding equation, to the limits of the integral, requires that the
limits of the integral relative to s, are taken from s = −∞ to s =∞. By taking the radical√
−1, with the − sign, we will have for U an expression of this form

U = c−µ
2

∫
ds c−s

2

Π

(
s+ µ

√
−1

c2r′

)
,

the arbitrary function Π(s) being able to be different from Γ(s). The sum of these two
expressions of U will be its complete value. But it is easy to be assured that the integrals
being taken from s = −∞ to s =∞, the addition of this new expression of U adds nothing
to the generality of the first, in which it is comprehended.

Let us develop now the second member of equation (A), according to the powers of
1
c2r′

, and let us consider one of the terms of this development, such as

H(i)c−µ
2

c4ir′

∫
ds c−s

2

(s− µ
√
−1)2i;

this term becoming, after the integrations,

1.3.5 . . . (2i− 1)

2i
√
π
H(i)c−µ

2

c4ir′

×
[
1− i(2µ)2

1.2
+
i(i− 1)(2µ)4

1.2.3.4
− i(i− 1)(i− 2)(2µ)6

1.2.3.4.5.6
+ etc.

]
14



Let us consider further one term of this development, relative to the odd [291]powers of 1
c2r′

,
such as

L(i)
√
−1c−µ

2

c(4i+2)r′

∫
ds c−s

2

(s− µ
√
−1)2i+1,

This term becomes, after the integrations,

1.3.5 . . . (2i+ 1)L(i)
√
πµc−µ

2

2ic(4i+2)r′

[
1− i(2µ)2

1.2.3
+
i(i− 1)(2µ)4

1.2.3.4.5
− etc.

]
.

Thus we will have therefore the general expression of the probability U , developed into
a series ordered according to the powers of 1

c2r′
, a series which becomes very convergent,

when r′ is a considerable number. This expression must be such, that
∫
Udx or 1

2

∫
Udµ
√
n

be equal to unity, the integrals being extended to all the values of x and of µ, that is from
x null to x = n, and from µ = −

√
n to µ =

√
n; because it is certain that one of the

values of x needing to take place, the sum of the probabilities of all these values must be
equal to unity. By taking the integral

∫
c−µ

2
dµ within the limits of µ, we have the same

result to very nearly, as by taking it from µ = −∞ to µ = ∞: the difference is only of
the order c

−n
√
n

; and seeing the extreme rapidity with which c−n diminishes in measure as n
increases, we see that this difference is insensible when n is a great number. This premised,
let us consider in the integral 1

2

∫
Udµ
√
n, the term

1.3.5 . . . (2i− 1)H(i)
√
nπ

2ic4ir′

×
∫
dµc−µ

2

[
1− i(2µ)2

1.2
+
i(i− 1)(2µ)4

1.2.3.4
− etc.

]
.

By extending the integral from µ = −∞ to µ =∞, this term becomes

1.3.5 . . . (2i− 1)1
2
H(i)π

√
n

2ic4ir′

[
1− i+

i(i− 1)

1.2
− i(i− 1)(i− 2)

1.2.3
+ etc.

]
.

The factor 1 − i + i(i−1)
1.2
− etc. is equal to (1 − 1)i; it is therefore null, except [292]in the case

of i = 0, where it is reduced to unity. It is clear that the terms of the expression of U
which contain the odd powers of µ, give a null result in the integral 1

2

∫
Udµ
√
n, extended

from µ = −∞ to µ =∞; because these terms have for factor c−µ2 , and we have generally
within these limits ∫

µ2i+1dµc−µ
2

= 0.

There is therefore only the first term of the expression of U , a term that we will represent
by Hc−µ2 , which can give a result in the integral 1

2

∫
Udµ
√
n, and this result is 1

2
H
√
nπ;

we have therefore
1

2
H
√
nπ = 1;

15



consequently,

H =
2√
nπ

.

The general expression of U has thus the following form,

U =
2c−µ

2

√
nπ


1 +

Q(1)(1− 2µ2)

c4r′
+
Q(2)(1− 4µ2 + 4

3
µ4)

c8r′
+ etc.

+
L(0)µ

c2r′
+
L(1)µ(1− 2

3
µ2)

c6r′
+
L(2)µ(1− 4

3
µ2 + 4

15
µ4)

c10r′
+ etc.

 ; (k)

Q(1), Q(2), etc., L(0), L(1), etc. being some indeterminate constants which depend on the
initial value of U .

Let us suppose that U becomes X when r is null; X being a given function of µ. We
have generally these two theorems,

0 = Q(i)

∫
µ2qdµUic

−µ2 ,

0 = L(i)

∫
µ2q+1dµU ′ic

−µ2 ,

when q is less than i; Ui and U ′i being functions of µ, by which 2Q(i)c−µ
2

√
nπc4ir′

and 2L(i)c−µ
2

√
nπc(4i+2)r′ are

multiplied in the expression of U . In order to demonstrate these theorems, we will observe

that, [293]by that which precedes, 2Q(i)c−µ
2
Ui√

nπ
is equal to

(
√
−1)2iH(i)c−µ

2

∫
ds c−s

2

(µ+ s
√
−1)2i;

it is necessary therefore to show that we have

0 =

∫∫
µ2qds dµ c−µ

2−s2(µ+ s
√
−1)2i;

the integrals being taken from µ and s equal to−∞ to µ and s equal to +∞. By integrating
first with respect to µ, this term becomes

2q − 1

2

∫∫
µ2q−2dµ ds c−µ

2−s2(µ+ s
√
−1)2i

+ i

∫∫
µ2q−1dµ ds c−µ

2−s2(µ+ s
√
−1)2i−1.

By continuing to integrate thus by parts relatively to µ, we arrive finally to some terms of
the form

k

∫∫
dµ ds c−µ

2−s2(µ+ s
√
−1)2e,
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e not being zero, and by that which precedes, these terms are null.
We will prove in the same manner, that we have

0 = L(i)

∫
µ2q+1 dµU ′i c

−µ2 .

Thence it follows that we have generally

0 =

∫
Ui Ui′dµ c

−µ2 , 0 =

∫
U ′i U

′
i′ dµ c

−µ2 ,

i and i′ being different numbers. Because if, for example, i′ is greater than i, all the powers
of µ in Ui, are less than 2i′; each of the terms of Ui will give therefore, by that which
precedes, a result null in the integral

∫
Ui Ui′dµ c

−µ2 . The same reasoning holds for the
integral

∫
U ′i U

′
i′ dµc

−µ2 .
But these integrals are not nulls, when i = i′. We will obtain [294]them in this case, in this

manner. We have, by that which precedes,

Ui =
2i(
√
−1)2i

∫
ds c−s

2
(µ+ s

√
−1)2i

1.3.5 . . . (2i− 1)
√
π

.

The term which has for factor µ2i in this expression, is

2i(
√
−1)2iµ2i

1.3.5 . . . (2i− 1)
;

now, we are able to consider only this term in the first factorUi of the integral
∫
UiUidµ c

−µ2;
because the inferior powers of µ, in this factor, give a null result in the integral. we have
therefore∫

UiUidµ c
−µ2 =

22i

[1.3.5 . . . (2i− 1)]2
√
π

∫∫
µ2idµ ds c−µ

2−s2(µ+ s
√
−1)2i.

We have, by integrating with respect to µ, from µ = −∞ to µ =∞,∫∫
µ2idµ ds c−µ

2−s2(µ+ s
√
−1)2i

=
2i− 1

2

∫∫
µ2i−2dµ ds c−µ

2−s2(µ+ s
√
−1)2i

+
2i

2

∫∫
µ2i−1dµ ds c−µ

2−s2(µ+ s
√
−1)2i−1

The first term of the second member of this equation is null by that which precedes; this
member is reduced therefore to its second term. We find in the same manner, that we have∫∫

µ2i−1dµ ds c−µ
2−s2(µ+ s

√
−1)2i−1

=
2i− 1

2

∫∫
µ2i−2dµ ds c−µ

2−s2(µ+ s
√
−1)2i−2,
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and thus consecutively; we have therefore∫∫
µ2idµ ds c−µ

2−s2(µ+ s
√
−1)2i =

1.2.3 . . . 2iπ

22i
;

consequently, ∫
UiUidµ c

−µ2 =
2.4.6 . . . 2i

√
π

1.3.5 . . . (2i− 1)
.

We [295]will find in the same manner,∫
U ′iU

′
idµ c

−µ2 =
1

2

2.4.6 . . . 2i
√
π

1.3.5 . . . (2i+ 1)
.

We have evidently ∫
UiU

′
i′dµ c

−µ2 = 0,

in the same case where i and i′ are equal, because the product UiU ′i′ contains only odd
powers of µ. This premised.

The general expression of U gives for its initial value, that we have designated by X ,

X =
2c−µ

2

√
nπ

{
1 +Q(1)

(
1− 2µ2

)
+ etc.

+L(0)µ+ L(1)µ
(
1− 3

2
µ2
)

+ etc.

}
.

If we multiply this equation by Uidµ, and if we take the integrals from µ = −∞ to µ =∞,
we will have, by virtue of the preceding theorems,∫

XUidµ =
2√
nπ

Q(i)

∫
UiUi.dµ.c

−µ2 ,

whence we deduce

Q(i) =
1.3.5 . . . (2i− 1)1

2

√
n

2.4.6 . . . 2i

∫
XUi.dµ;

we will find in the same manner,

L(i) =
1.3.5 . . . (2i+ 1)

√
n

2.4.6 . . . 2i

∫
XU ′i .dµ.

We will have therefore thus the successive values of Q(1), Q(2), etc.; L(0), L(1), etc., by
means of definite integrals, when X or the initial value of U will be given.

In the case where X is equal to 2i√
nπ
c−i

2µ2 , the general expression of U takes a very sim-

ple form. Then the arbitrary function Γ
(
s−µ
√
−1

c2r′

)
[296]of formula (A) is of the form kc

−β
(
s−µ
√
−1

c2r
′

)2

.
In order to determine the constants β and k, we will observe that by supposing

β′ =
β

c4r′
,

18



we will have

U = kc
− µ2

1+β′

∫
ds c

−(1+β′)
(
s−β

′µ
√
−1

1+β′

)2

.

By making next √
1 + β′

(
s− β′µ

√
−1

1 + β′

)
= s′,

and observing that the integral relative to s must be taken from s = −∞ to s = ∞, the
integral relative to s′ must be taken within the same limits, we will have

U =
k
√
π√

1 + β′
c
− µ2

1+β′ .

By comparing this expression to the initial value of U , which is

U =
2i√
nπ

c−i
2µ2 ;

and observing that β is the initial value of β′, we will have

i2 =
1

1 + β
;

whence we deduce

β =
1− i2

i2
, β′ =

1− i2

i2c4r′
.

We must have next
k
√
π√

1 + β
=

2i√
nπ

;

that which gives

k
√
π =

2√
nπ

,

a value that we obtain next, by the condition that 1
2

∫
Udµ
√
n = 1, the integral [297]being taken

from µ = −∞ to µ =∞; we will have, for the expression of U , whatever be r′,

U =
2√

nπ(1 + β′)
c
− µ2

1+β′ .

We find, indeed, that this value of U , substituted into the equation in the partial differentials
in U , satisfies it.

β′ diminishing without ceasing when r′ increases, the value ofU varies without ceasing,
and becomes in its limit, when r′ is infinity,

U =
2√
nπ

c−µ
2

.

19



In order to give an application of these formulas, let us imagine, in an urn C, a very
great number m of white balls, and a parallel number of black balls. These balls having
been mixed, let us suppose that we draw from the urn, n balls that we put into urnA. Let us
suppose next that we put into urn B, as many white balls, as there are black balls in urn A,
and as many black balls, as there are white balls in the same urn. It is clear that the number
of cases in which there will be x white balls, and consequently n− x black balls in urn A,
is equal to the product of the number of combinations of the m white balls of urn C, taken
x by x, by the number of combinations of the m black balls of the same urn, taken n − x
by n− x. This product is, by §3, equal to

m(m− 1)(m− 2) · · · (m− x+ 1)

1.2.3 . . . x

m(m− 1)(m− 2) · · · (m− n+ x+ 1)

1.2.3 . . . (n− x)

or to
(1.2.3 . . .m)2

1.2.3 . . . x.1.2.3 . . . (n− x).1.2.3 . . . (m− x).1.2.3 . . . (m− n+ x)
.

The number of all possible cases is the number of combinations of the 2m balls from urn
C, taken n by n; this number is

1.2.3 . . . 2m

1.2.3 . . . n.1.2.3 . . . (2m− n)
;

by dividing the preceding fraction by that here, we will have, for the probability [298]of x or for
the initial value of U ,

(1.2.3 . . .m)21.2.3 . . . n.1.2.3 . . . (2m− n)

1.2.3 . . . x.1.2.3 . . . (m− x).1.2.3 . . . (n− x).1.2.3 . . . (m− n+ x).1.2.3 . . . 2m
:

Now, if we observe that we have very nearly, when s is a great number,

1.2.3 . . . s = ss+
1
2 c−s
√

2π;

we will find easily after all the reductions, by making

x =
n+ µ

√
n

2
,

and by neglecting the quantities of order 1
n

, which are not multiplied by µ2,

U =
2√
nπ

√
m

2m− n
c−

mµ2

2m−n ;

by making therefore
i2 =

m

2m− n
;
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we will have
U =

2i√
nπ

c−i
2µ2 .

If the number m is infinite, then i2 = 1
2
, and the initial value of U is

U =

√
2√
nπ

c−
1
2
µ2 .

Its value, after any number of drawings, is

U =
2√

nπ
(

1 + c−
4r
n

)c− µ2

1+c
− 4r
n .

The case of m infinite returns to the one in which the urns A and B would be filled, by
projecting n times a coin which would bring forth indifferently heads or tails, and putting
into urn A, a white ball, [299]each time that heads would arrive, and a black ball, each time that
tails would arrive; and making the inverse for urn B. Because it is clear that the probability
of drawing a white ball from urn C, is then 1

2
, as that to bring forth heads or tails.

By taking the integral
∫
Udx, or 1

2

∫
Udµ
√
n, from µ = −a to µ = a, we will have the

probability that the number of white balls of urn A, will be comprehended within the limits
±a
√
n.

We are able to generalize the preceding result, by supposing the urn A filled as at the
beginning of this section, by the projection of a prism of p+ q lateral faces, of which p are
white and q are black. We have seen that then if we make

i2 =
(p+ q)2

2pq
,

we have at the origin, or when r is null,

U =
i√
nπ

c−
i2

n (x− np
p+q )

2

.

Let us suppose p and q very little different, so that we have

p =
p+ q

2

(
1 +

a√
n

)
,

q =
p+ q

2

(
1− a√

n

)
,

we will have
i2 =

2

1− a2

n

,
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or very nearly i2 = 2; therefore

U =
2√
2nπ

c
− 2
n

(
x−n

2
−a
√
n

2

)2

.

By making therefore

x =
n+ µ

√
n

2
;

we will have
U =

2√
2nπ

c−
1
2
(µ−a)2 .

Let [300]us suppose now that after any number whatsoever of drawings, we have

U =
2√
nβπ

c−
(µ−α)2

β ,

β and α being some functions of r′. If we substitute this value into the equation in the
partial differences in U , we will have

−
(
dβ

dr′

)[
1− 2(µ− α)2

β

]
+ 4

(
dα

dr′

)
(µ− α)

= 4(β − 1)

[
1− 2(µ− α)2

β

]
− 8α(µ− α),

whence we deduce the two following equations,(
dβ
dr′

)
β − 1

= −4,

(
dα

dr′

)
= −2α.

By integrating them, and observing that at the origin of r′, α = a and β = 2, we will have

β = 1 + c−4r
′
, α = ac−2r

′
;

that which gives

U =
2√

nπ(1 + c−4r′)
c
− (µ−ac−2r′ )2

1+c−4r′ .

Let us seek now the mean value of the number of white balls contained in urn A, after
r drawings. This value is the sum of the products of the diverse numbers of white balls,
multiplied by their respective probabilities; it is therefore equal to the integral∫

n+ µ
√
n

2
.U.

dµ
√
n

2
,
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taken from µ = −∞ to µ = ∞. By substituting for U its value given by formula (k), we
will have, by virtue of the preceding theorems, for this integral,

1

2
n+

√
n

4
L(0)c−

2r
n .

At the origin where r is null, this value is 1
2
n+

√
n
2
L(0); thus we will have L(0) [301]by means of

the number of white balls that urn A contains at this origin.
We are able to obtain quite simply in the following manner, the mean value of the

number of white balls, after r drawings. Let us imagine that each white ball has a value
that we will represent by unity, the black balls being supposed to have no value. It is clear
that the value of urn A will be the sum of the products of all the possible numbers of white
balls which are able to exist in the urn, multiplied by their respective probabilities; this
value is therefore that which we have named mean value of the number of white balls. Let
us name it z, after the rth drawing. At the following drawing, if there exits a white ball,
this value diminishes by one unit; now if we suppose that x is the number of white balls
contained in the urn after the rth drawing, the probability of extracting a white ball from it
will be x

n
; by naming therefore U the probability of this supposition, the integral

∫
Uxdx
n

,
extended from x = 0 to x = n, will be the diminution of z, resulting from the probability to
extract a white ball, from the urn. If we make, as above, r

n
= r′, and if we designate the very

small fraction 1
n

by dr′, this diminution will be equal to zdr′; because z is equal to
∫
Uxdx,

a sum of the products of the numbers of white balls, by their respective probabilities. The
value of urn A is increased, if we extract a white ball from urn B, in order to put it into
urn A; now, x being supposed the number of white balls of urn A, n− x will be the one of
the white balls of urn B, and the probability to extract a white ball from this last urn, will
be n−x

n
; by multiplying this probability by the probability U of x, the integral

∫
U n−x

n
dx,

taken from x null to x = n, will be the increase of z.
∫
U.(n− x)dx is the value of urn B;

by naming therefore z′ this value, z′dr′ will be the increase of z: we will have therefore

dz = z′dr′ − zdr′.

The sum of the values of the two urns is evidently equal to n, number [302]of white balls that
they contain, that which gives z′ = n − z; substituting this value of z′ into the preceding
equation, it becomes

dz = (n− 2z)dr′;

whence we deduce by integrating,

z =
1

2
n+

L(0)

4c2r′
,

L(0) being an arbitrary constant; that which is conformed to that which precedes.
We can extend all this analysis, to the case of any number whatsoever of urns: we will

limit ourselves here to seek the mean value of the number of white balls that each urn
contains after r drawings.
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Let us consider a number e of urns, disposed circularly, and each containing the number
n of balls, some white, and the others black; n being supposed a very great number. Let
us suppose that after r drawings, z0, z1, z2, . . . ze−1 are the respective values of the diverse
urns. Each drawing consists in extracting at the same time, one ball from each urn, and to
put it into the following, by departing from one of them in a determined sense. If we make
r
n

= r′ and 1
n

= dr′; we will have, by the reasoning that we have just made relatively to
two urns,

dzi = (zi−1 − zi)dr′;

this equation holds from i = 1 to i = e− 1. In the case of i = e, we have

dz0 = (ze−1 − z0)dr′;

by integrating these equations, and supposing that at the origin the respective values of each
urn, or the numbers of white balls that they contain, are

λ0, λ1, . . . , λe−1.

We arrive to this result which holds from i = 0 to i = e− 1,

[303]zi =
1

e
Sc−(1−cos 2sπ

e )r′



λ0 cos

(
2siπ

e
− ar′

)
+λ1 cos

(
2s(i− 1)π

e
− ar′

)
+λ2 cos

(
2s(i− 2)π

e
− ar′

)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

+λe−1 cos

(
2s(i− e+ 1)π

e
− ar′

)


the sign S extending to all the values of s, from s = 1 to s = e, and a being equal to
sin 2sπ

e
. The term of this expression, corresponding to s = e, is independent of r′, and

equal to 1
e
(λ0 + λ1 + · · · + λe−1); that is, the entire sum of the white balls of the urns,

divided by their number. This term is the limit of the expression of zi; whence it follows
that after an infinite number of drawings, the values of each urn are equal among them.
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