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§1. U being any function whatever of a variable t, if we develop it according to [617]
the powers of t, the coefficient of tx, in this development, will be a function of x that
I will designate by yx; U is that which I have named generating function of yx. If we
multiply U by a function T of t, similarly developed according to the ascending powers
of t, the product UT will be a new generating function of a function of x, derived from
the function yx according to a law which will depend on the function T . If T is equal
to 1

t − 1, it is easy to see that the derived will be yx+1 − yx, or the finite difference
of yx. Let us designate generally, whatever be T , this derived by δyx. If we multiply
the product UT by T , the derived of the product UT 2 will be a derived of δyx similar
to the derived of δyx in yx; we will be able therefore to designate by δ2yx this second
derived; whence it is clear generally that UTn will be the generating function of δnyx.

If we multiply U by another function Z of t, similarly developed according to the
ascending powers of t, and if we designate by the characteristic4 that which we have
named δ relative to the function T , UZn will be the generating function of4nyx.

We are able to imagine T as a function of Z. By developing this function into series
with respect to the ascending powers of Z, we will have an expression of T of this form

T = A(0) +A(1)Z +A(2)Z2 + · · ·

By multiplying this equation by U and passing again from the generating functions
to the coefficients, we will have [618]

δyx = A(0)yx +A(1)4yx +A(2)42yx + · · ·

We see thus that the same equation, which holds between T and Z, holds between their
characteristics δ and 4, provided that, in the development of this equation according
to the powers of δ and of 4, we substitute, instead of any power δr, δryx; instead
of a power 4r′ , 4r′yx; instead of a product such as δr4r′ , δr4r′yx; and that we
multiply by yx the terms independent of δ and 4. Thus, by supposing T equal to
1
t − 1, Z = 1

ti − 1, δyx will be the finite difference of yx, x varying by unity;4yx will
be the finite difference of yx, x varying with i; we have next

Z = (1 + T )i − 1,

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. August 2, 2013
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and, consequently,
Zn = [(1 + T )i − 1]n;

that which gives
4n = [(1 + δ)i − 1]n,

provided that after the development we place yx after the powers of the characteristics.
This equation will hold furthermore by making n negative, but then the differences are
changed into integrals. The consideration of the generating functions show thus, in the
most natural and most simple manner, the analogy of the powers and of the differences.
We are able to consider this theory as the calculus of characteristics.

If we have 0 = δyx,we will have an equation in the finite differences: UT becomes
then a polynomial which contains only powers of t smaller than the highest of t in T .
Let us designate by Q the polynomial in t the most general of this nature; we will have

U =
Q

T
.

The coefficient of tx in the development of U will be the integral yx of the equation
0 = δyx; by this reason, I name U generating function of this equation.

If we imagine U a function of two variables t and t′, the coefficient of the product [619]
txtx

′
, in the development of U , will be a function of x and of x′ that I designate by

yx,x′ ; T being a function developed in the same variables t and t′, the product UT will
be the generating function of a derived of yx,x′ , that I will designate by δyx,x′ ; and it
is easy to conclude from it that UTn will be the generating function of δnyx,x′ .

If we have 0 = δyx,x′ , we will have an equation in the partial finite differences. Let
us represent this equation by the following

0 = ayx,x′ + byx,x′+1 + cyx,x′+2+ · · · ,
+ a′yx+1,x′ + b′yx+1,x′+1+ · · · ,
+ a′′yx+1,x′+ · · ·
+ · · · ;

it is easy to see that the generating function of the proposed equation will be

A+Bt′ + Ct′2 + · · ·+Ht′n
′−1 +A′ +B′t+ C ′t2 + · · ·+H ′tn−1

atnt′n
′

+ btnt′n
′−1 + atnt′n

′−2+ · · ·
+ a′tn−1t′n

′
+ b′tn−1t′n

′−1+ · · ·
+ a′′tn−2t′n

′
+ · · ·

+ · · · · · · ,


n and n′ being the greatest increases of x and of x′, in the proposed equation in partial
differences; A, B, C, . . . , H are arbitrary functions of t; A′, B′, C ′, . . . , H ′ are ar-
bitrary functions of t′. We will determine all these functions by means of the generating
functions of

y0,x′ , y1,x′ , y2,x′ , . . . , yn−1,x′,

yx,0, yx,1, yx,2, . . . , yx,n′−1.
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One of the principal advantages of this manner to integrate the equations in partial
differences consists in this that, the algebraic analysis furnishing diverse ways to de-
velop the functions, we are able to choose the one which agrees best to the proposed
question. The solution of the following problems, by the count de Laplace, my son, [620]
and the considerations that he has joined will spread a new day on the calculus of
generating functions.

§2. A player A draws from an urn, containing some white and black balls, one
ball which he returns after the trial, with the probability p to bring forth a white ball
and the probability q to extract from it a black; a second player B draws next, from
another urn, a ball which he returns equally after the drawing, with the probabilities p′

of a white ball and q′ of a black. These two players continue thus to extract alternately,
each from their respective urn, a ball which they always take care to return. If one of
the players brings forth a white ball, he counts a point; if, on the contrary, he makes a
black ball exit, he counts nothing, and the turn of the player passes simply to the other.
The players having settled, by the conditions of their game, the number of points that
each must attain first in order to win the game, and having commenced to play, there is
lacking yet to player A the number x points in order to win, and x′ to player B; and the
turn to play belongs to player A. We demand, in this position, what is the probability
of each player to win the game.

Let zx,x′ be the probability of second player B, and let us represent by Yx,x′ his
probability, if he were the first to play. Player A, by beginning, is able to bring forth
a white ball, and the probability of B becomes Yx−1,x′ ; or the first player makes a
black ball exit, and then counts nothing, and the probability of the second is changed
into Yx,x′ ; but the probability of the first case is p, that of the second q; we will have
therefore the equation

zx,x′ = pYx−1,x′ + qYx,x′ ;

by a similar reasoning, we will have further this one

Yx,x′ = p′zx,x′−1 + q′zx,x′ ;

whence we deduce
Yx−1,x′ = p′zx−1,x′−1 + q′zx−1,x′ ,

and consequently(1) [621]

zx,x′ = p(p′zx−1,x′−1 + q′zx−1,x′) + q(p′zx,x′−1 + q′zx,x′)

1We arrive again to this equation in partial differences by considering together the two successive draw-
ings of A and B as one trial, and by examining the different cases which are able to be presented after this
trial played; now they are in number of four: 1 ˚ either the two players bring forth each one white ball, an
event of which the probability is pp′; then the probability zx,x′ will be changed into this one zx−1,x′−1;
2 ˚ or the first player extracts a white ball and the second a black; under this hypothesis, which has for prob-
ability pq′, zx,x′ will become zx−1,x′ ; 3 ˚ or on the contrary the first player makes a black ball exit and
the second a white; under this hypothesis, which has for probability p′q, zx,x′ will become zx,x′−1; 4 ˚ or
finally each player draws a black ball, an event of which the probability is qq′, and then the probability zx,x′
remains the same. We will have therefore, by the known principles of probabilities, the equation

zx,x′ = pp′zx−1,x′−1 + pq′zx−1,x′ + p′qzx,x′−1 + qq′zx,x′ .

On obtains the generating function of zx,x′ , in this equation in partial differences, by applying to this case
the general rule which has just been exposed.
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or

zx,x′ =
pq′

1− qq′
zx−1,x′ +

p′q

1− qq′
zx,x′−1 +

pp′

1− qq′
zx−1,x′−1,

and by making

pq′

1− qq′
= m,

p′q

1− qq′
= m′,

pp′

1− qq′
= n,

it will become
zx,x′ = mzx−1,x′ +m′zx,x′−1 + nzx−1,x′−1.

The generating function of zx,x′ , in this equation in partial differences, is

A+A′

1−mt−m′t′ − ntt′
,

A being an arbitrary function of t, and A′ another arbitrary function of t′; I observe
first that by attributing to the function A′ the term independent of t in the function A,
the generating function above is able to be game under this form

A1t+A′1
1−mt−m′t′ − ntt′

,

A1 and A′1 being new arbitrary functions of t and of t′ that it is the question to de-
termine. Now, if we pay attention that z0,x′ is null, whatever be x′, the probability of [622]
player A is changed then to certitude, we see that the coefficient of t0 in the develop-
ment of the generating function with respect to the powers of t must be null, and we
will have

A′1
1−m′t′

= 0 or A′1 = 0.

Moreover, zx,0 is null when x is zero, and equal to unity when x is either 1 or 2, or
3, . . ., since then the probability of player B is changed into certitude; the generating
function of zx,0 is therefore t

1−t ; it is the coefficient of t′0 in the development of the
generating function according to the powers of t′; we will have therefore

A1t

1−mt
=

t

1− t
;

that which gives

A1t =
t(1−mt)

1− t
;

consequently the generating function of zx,x′ is

(a)
t(1−mt)

(1− t)(1−mt−m′t′ − ntt′)
;

by putting it under this form

t

1− t
1

1−
(

m′+nt
1−mt

)
t′
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and the development with respect to the powers of t′, we have

t

1− t

[
1 +

(
m′ + nt

1−mt

)
t′ +

(
m′ + nt

1−mt

)2

t′2 +

(
m′ + nt

1−mt

)3

t′3 + · · ·

]
.

The coefficient of t′x
′

in this series is

t

1− t

(
m′ + nt

1−mt

)x′

,

and the one of tx in the development of this last function will be the expression of zx,x′ . [623]

Now, if we reduce first the expression t
(

m′+nt
1−mt

)x′
into a series ordered according to

the powers of t, and if we multiply it next by the development of 1
1−t , it is easy to see

that the coefficient of tx in this product is that which the series becomes by making
t = 1 in it and stopping ourselves at the power x of t; and we will find, for the value of
this coefficient or of zx,x′ ,

zx,x′ = m′x
′



1+
x′

1

n

m′
+
x′(x′ − 1)

1.2

n2

m′2
+
x′(x′ − 1)(x′ − 2)

1.2.3

n3

m′3
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 2)

1.2. . . . (x− 1)

nx−1

m′x−1

+
x′

1
m

[
1 +

x′

1

n

m′
+
x′(x′ − 1)

1.2

n2

m′2
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 3)

1.2. . . . (x− 2)

nx−2

m′x−2

]
+
x′(x′ − 1)

1.2
m2

[
1 +

x′

1

n

m′
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 4)

1.2. . . . (x− 3)

nx−3

m′x−3

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
x′(x′ + 1) · · · (x′ + x− 2)

1.2. . . . (x− 1)
mx−1


By designating by yx,x′ the probability of player A, we will be led, by the same

reasonings, to a similar equation in the partial differences,

yx,x′ = myx−1,x′ +m′yx,x′−1 + nyx−1,x′−1,

which gives similarly for the variable yx,x′ a generating function of the form

A1t+A′1
1−mt−m′t′ − ntt′

,

A1 and A′1 being, as above, arbitrary functions of t and of t′ what we will determine
by the same considerations. In fact the generating function of y0,x′ is 1

1−t′ , that of yx,0
is unity: we will form therefore the equations

A′1
1−m′t′

=
1

1− t′
;

whence we deduce

A′1 =
1−m′t′

1− t′
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and [624]
A1t+ 1

1−mt
= 1;

whence we conclude
A1t = −mt.

The generating function of yx,x′ will be therefore

(b)
1−m′t′
1−t′ −mt

1−mt−m′t′ − ntt′
,

which, developed according to the powers of t and of t′, will give, by the coefficient of
txt′x

′
, the expression of yx,x′ which will be of a form similar to that of zx,x′ , although

a little more complicated.
By adding the two generating functions (a) and (b), their sum is reduced to that

here
1

(1− t)(1− t′)
,

in which the coefficient of txt′x
′

is unity; thus we have

yx,x′ + zx,x′ = 1;

and effectively, the game must be necessarily won by one of the players, because both
are certain to be able to extract each from their urn the determined numbers of white
balls.

Now, let us suppose p = 0 and consequently q = 1, we have

m = 0, m′ = 1 and n = 0;

then the expression of zx,x′ becomes unity; that which is evident, since the player B,
having no more chances to lose, must always end by winning.

If, to the contrary, we suppose p = 1 and q = 0, that is if the first player A counts
a point before each drawing of player B, then

m = q′, m′ = 0 and n = p′;

x′ being greater than x or equal, the expression zx,x′ is reduced to zero; and, in fact, it [625]
is evidently impossible that, in this case, player B is able to win the game; but, when x
is greater than x′, the value of zx,x′ takes this form

zx,x′ = p′x
′
[
1 +

x′

1
q′ +

x′(x′ + 1)

1.2
q′2 + · · ·+ x′(x′ + 1) · · · (x− 2)

1.2 . . . (x− x′ − 1)
q′x−x

′−1
]
.

Under this assumption, player B is able to win only so much as he will bring forth
x′ white balls before x − x′ black balls; otherwise, he is anticipated by player A who
counts a point at each trial: this expression of zx,x′ is therefore the probability that
player B will have drawn x′ white balls before having extracted from it x− x′ blacks,
and, consequently, the probability to win, if he made the wager with player A, who
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would count then a point with the exit of each black ball while he counts one of them
at the exit of a white, to attain x′ points before his adversary has x − x′ of them; that
which is the problem of points. (2)

If we examine with attention the form of the general expression which gives zx,x′ , [626]
we will recognize that this problem is able yet to be resolved, and even with simplicity,
by means of the theory of combinations: in fact, let a be the number of white balls
contained in the urn of player A, and b the one of the blacks; a′ the number of white
balls of player B, and b′ the one of the blacks; by considering, as we have already done,
the set of two successive drawings of A and B as one trial,

aa′ will be the number of combinations in which the players bring forth each one
white ball;

ab′ the one of the combinations which will give one white ball to A and one black
to B;

a′b the one of the combinations which will give, to the contrary, one black ball to
A and one white to B;

bb′ the one of the combinations in which both players draw a black ball;
And the sum aa′ + ab′ + a′b+ bb′ will form the collection of all the combinations

which are able to take place in a trial. The combinations where the players bring
forth each one black ball bring no change to their position, we are able to set it aside,
and then we occupy ourselves only with the trials where there will be brought forth
at least one white ball. It is clear that in x + x′ similar trials one of the players has
necessarily won, and the game must be decided: now the number of all the equally
possible combinations, according to which these x+ x′ trials are able to be presented,
will be

(aa′ + ab′ + a′b)x+x′ ;

2The generating function of zx,x′ is reduced in this case to

t(1− q′t)

(1− t)(1− q′t− p′tt′)
,

and the equation in the corresponding partial differences will be

zx,x′ = q′zx−1,x′ + p′zx−1,x′−1,

in which zx,x′ is a function of x and of x′ which we will designate by φ(x, x′); if we make x−x′ = s, we
will have

φ(x, x′) = φ(s+ x′, x′),

and, if we represent by zs,x′ this last function, there results from it

zx,x′ = zs,x′ , zx−1,x′ = zs−1,x′ , zx−1,x′−1 = zs,x′−1;

and the equation in the partial differences is changed into that here

zs,x′ = q′zs−1,x′ + p′zs,x′−1,

an equation to which the problem of points would lead directly under the conditions enunciated above. By
paying attention that, in consequence of this transformation, zs,0 = 1 and z0,x′ = 0, and that z0,0 is not
able to take place, it is easy to see that the generating function of zs,x′ will be

t(1− q′t)

(1− t)(1− q′t− p′t′)
,

in the development of which the coefficient of tst′x
′

will be the expression of zs,x′ .
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the question is reduced therefore to choose in all these combinations those which make
player B win, that is those in which this player will have x′ white balls before player
A has brought forth x of them. In order to fix the ideas, let us suppose x′ greater
than x; we are able to form the following hypotheses: either player B will have won
at the xth trial, that is by drawing without interruption a white ball at each trial, and
then the number of the preceding combinations which are corresponding to this case is
evidently [627]

a′x
′
[
bx
′
+
x′

1
abx

′−1 +
x′(x′ − 1)

1.2
a2bx

′−2 + · · ·

+
x′(x′ − 1) · · · (x′ − x+ 2)

1.2 . . . (x− 1)
ax−1bx

′−x+1

]
(aa′ + ab′ + a′b)x;

and by dividing it by (aa′ + ab′ + a′b)x+x′ , the total number of combinations, we will
have, for the probability of this hypothesis,

a′x
′
bx
′

(aa′ + ab′ + a′b)x′

[
1 +

x′

1

a

b
+
x′(x′ − 1)

1.2

a2

b2
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 2)

1.2 . . . (x− 1)

ax−1

bx−1

]
;

or the player B will have won at the (x′+1)st trial, that is by having drawn only a single
black ball, for example at the commencement, and then the number of combinations
favorable to this event is

b′a′x
′
[
bx
′
+
x′

1
abx

′−1 +
x′(x′ − 1)

1.2
a2bx

′−2 + · · ·

+
x′(x′ − 1) · · · (x′ − x+ 3)

1.2 . . . (x− 2)
ax−2bx

′−x+2

]
(aa′ + ab′ + a′b)x−1;

but this number is the same, if the black ball is brought forth in the first trial or in the
second, . . ., or in the xth trial; it is necessary therefore to multiply it by x′ in order to
have all the combinations relative to this hypothesis, of which the probability is, by this
means,

x′

1

ab′a′x
′
bx
′

(aa′ + ab′ + a′b)x′+1

[
1 +

x′

1

a

b
+
x′(x′ − 1)

1.2

a2

b2
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 3)

1.2 . . . (x− 2)

ax−2

bx−2

]
;

or player B will have won at the (x′ + 2)nd trial, and we will see in the same manner
that the probability of this hypothesis will be

x′(x′ + 1)

1.2

a2b′2a′x
′
bx
′

(aa′ + ab′ + a′b)x′+2

[
1 +

x′

1

a

b
+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 4)

1.2 . . . (x− 3)

ax−3

bx−3

]
;

By continuing thus, we will have the probabilities of all the successive hypotheses
which are able to be presented under the supposition of the gain of the game by player
B, until that where he would win only at the (x′ + x− 1)st trial, an event of which the [628]
probability will be

x′(x′ + 1) · · · (x′ + x− 2)

1.2 . . . (x− 1)

ax−1b′x−1a′x
′
bx
′

(aa′ + ab′ + a′b)x′+x−1 ;
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and effectively, in this case, there are not able to be trials where the players bring forth
at the same time a white ball.

The sum of all these probabilities will give evidently that of player B in order to
win the game.

If we pay attention that

ab′

aa′ + ab′ + a′b
= m,

a′b

aa′ + ab′ + a′b
= m′, and

q

b
=

n

m′
,

we recover the expression of zx,x′ .
Let us imagine presently that there are in the urns some white balls bearing the n◦ 1,

and other balls, of the same color, which bear the n◦ 2; each ball diminishing by its nu-
meral, by its exit, the number of points which are lacking yet to the player to which it is
favorable. The problem is no longer susceptible to be resolved generally by means of
combinations, instead the calculation of the generating functions will continue to fur-
nish a general expression of which the development will contain the complete solution
of the question and will be able, in certain cases, to be executed by laws easy to know,
as we will have occasion to see.

Let p be the probability player A to extract a ball labeled 1, p1 that to extract a
ball labeled 2, and q that to bring forth a black ball; p′, p′1 and q′ the corresponding
probabilities for player B; and let always zx,x′ be the probability of this last player in
order to win the game. By following the same march as above, we will be led to the
equation in partial differences

zx,x′ =mzx−1,x′ +m1zx−2,x′ +m′zx,x′−1 +m′1zx,x′−2

+ nzx−1,x′−1 + n1zx−2,x′−1 + n′zx−1,x′−2 + n′1zx−2,x′−2

in which we make [629]

pq′

1− qq′
= m,

p1q
′

1− qq′
= m1,

p′q

1− qq′
= m′,

p′1q

1− qq′
= m′1,

pp′

1− qq′
= n,

p1p
′

1− qq′
= n1,

pp′1
1− qq′

= n′,
p1p
′
1

1− qq′
= n′1;

the generating function of the variable zx,x′ given by this equation, will be

(c)
A+Bt′ +A′ +B′t

1−mt−m1t2 −m′t′ −m′1t′2 − ntt′ − n1t2t′ − n′tt′2 − n′1t2t′2
,

A and B being arbitrary functions of t, A′ and B′ arbitrary functions of t′, which will
be determined by means of the generating functions of

z0,x′ , zx,0, z1,x′ , zx,1

which are themselves it by the conditions of the game.
We find, as previously, that the generating function of z0,z′ is zero and that of zx,0,

t
1−t .
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From the general equation, we deduce the equation in finite differences

z1,x′ = m′z1,x′−1 +m′1z1,x′−2,

which holds for all the values of x′ from x′ = 2 inclusively, and which gives conse-
quently, for the generating function of z1,x′ ,

a+ bt′

1−m′t′ −m′1t′2
,

a and b being constants that we determine by means of the values of z1,0 and z1,1; and
as z1,0 is equal to unity, z1,1 is equal tom′+m′1, and is at the same time the coefficient
of t′ in the development of the generating function; there results from it

a = 1 and b = m′1;

the generating function of z1,x′ is therefore

1 +m′1t
′

1−m′t′ −m′1t′2
.

Now, if in the preceding equation we put 1− yx,x′ in the place of zx,x′ , yx,x′ being [630]
always the probability of the first player A, it is reformed in the same manner with
respect to this last variable, and we will deduce from it similarly the equation in the
finite differences

yx,1 = myx−1,1 +m1yx−2,1.

But we will see at the same time that it begins to hold only when x surpasses 2; because,
x being 2, we will have

y2,1 = my1,1 +m1y0,1 + n1 + n′1.

It is necessary therefore to employ it only by departing from x = 3, and then the
generating function of yx,1 is of the form

a+ bt+ ct2

1−mt−m1t2
,

a, b and c being constants that we will determine, as previously, by means of the values
of y1,0, y1,1 and y1,2; now y1,0 is unity; y1,1 is equal to 1 − m′ − m′1, and is the
coefficient of t in the development of the generating function; y2,1 has for value, as we
have just seen,

m(1−m′ −m′1) +m1 + n1 + n′1;

this is the coefficient of t2 in the development of the function. We will conclude from
it

a = 1, b = 1−m−m′ −m′1, and c = n1 + n′1,

and the generating function of yx,1 will be therefore

1 + (1−m−m′ −m′1) t+ (n1 + n′1) t2

1−mt−m1t2
;

10



consequently that of zx,1 is

1

1− t
−1 + (1−m−m′ −m′1) t+ (n1 + n′1) t2

1−mt−m1t2

=
(m′ +m′1) t+ (n1 + n′1) t2 + (n1 + n′1) t3

(1− t)(1−mt−m1t2)
.

Let us resume actually the generating function (c); we are able always to restore it [631]
to this form

A1t+B1t
2t′ +A′1 +B′1tt

′

1−mt−m1t2 −m′t′ −m′1t′2 − ntt′ − n1t2t′ − n′tt′2 − n′1t2t′2
,

A1 and B1 being the arbitrary functions of t, A′1 and B′1 the arbitrary functions of t′;
which we determine easily, by equating first the coefficient of t0 in the development
of this function to the generating function of z0,x′ or zero, next the one of t′0 to the
generating function of zx,0 or t

1−t , since the one of t to the generating function of
z1,x′ , and finally the one of t′ to the generating function of zx,1, that which will give
successively

A′1 = 0, A1 =
1−mt−m1t

2

1− t
, B′1 = m′1, B1 =

m′1 + n′ + n′1t

1− t
,

and, consequently, for the generating function of zx,x′ ,

(d)
(1−mt−m1t

2)t+m′1tt
′ + n′t2t′ + n′1t

3t′

(1− t)(1−mt−m1t2 −m′t′ −m′1t′2 − ntt′ − n1t2t′ − n′tt′2 − n′1t2t′2)
.

If we suppose p and p′ null, then we have

m = 0, m′ = 0, n = 0, n1 = 0, and n′ = 0,

and the function (d) takes this form

tt′(m′1 + n′1t
2)

(1− t)(1−m1t2)
[
1−

(
m′1+n′1t

2

1−m1t2

)
t′2
] +

t

(1− t)
[
1−

(
m′1+n′1t

2

1−m1t2

)
t′2
] ,

under which it is susceptible of the same developments as the function (a). There is to
note that we will recover the same coefficient for

t2rt′2r
′
, t2r−1t′2r

′
, t2rt′2r

′−1, t2r−1t′2r
′−1;

that which is seen a priori, by paying attention that the players always count two points
with each white ball that they make exit.

Let us suppose that player A alone has some balls labeled 1 and 2, and that the [632]
other player has only some white balls marked 1, or which count to him only one point
on exiting; then

p′1 = 0

11



and, hence,
m′1 = 0, n′ = 0, n′1 = 0;

the function (d) becomes

t(1−mt−m1t
2)

(1− t)(1−mt−m1t2 −m′t′ − ntt′ − n1t2t′)
=

t

1− t
1

1−
[
m′+(n+n1t)t
1−(m+m1t)t

]
t′

;

by developing it according to the powers of t′, the coefficient of t′x
′

will be

t [m′ + (n+ n1t)t]
x′

(1− t) [1− (m+m1t)t]
x′
,

an expression that the concern is to develop with respect to the powers of t in order to
have the coefficient of tx; now this coefficient will be the sum of all the coefficients of
the powers of t inferior or equal to tx−1, in the development of the expression

[m′ + (n+ n1t)t]
x′

[1− (m+m1t)t]
x′
,

which, by omitting the terms where the powers of t outside the binomials are superior
to tx−1, is able to be put under this form

m′x
′



1+
x′

1

(
n+ n1t

m′

)
t+

x′(x′ − 1)

1.2

(
n+ n1t

m′

)2

t2 + · · ·+ x′(x′ − 1) · · · (x′ − x+ 2)

1.2 . . . (x− 1)

(
n+ n1t

m′

)x−1

tx−1

+
x′

1
(m+m1t)t

[
1 +

x′

1

(
n+ n1t

m′

)
t+ · · ·+ x′(x′ − 1) · · · (x′ − x+ 3)

1.2 . . . (x− 2)

(
n+ n1t

m′

)x−2

tx−2

]

+
x′(x′ + 1)

1.2
(m+m1t)

2t2

[
1 + · · ·+ x′(x′ − 1) · · · (x′ − x+ 4)

1.2 . . . (x− 3)

(
n+ n1t

m′

)x−3

tx−3

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
x′(x′ − 1) · · · (x′ − x+ 2)

1.2 . . . (x− 1)
(m+m1t)

x−1tx−1.


If we reject further from this series all the powers of t superior to tx−1, which will [633]
result from the developments of the binomials, and if, in that which remains, we make
t = 1, we will have the expression of zx,x′ .

Let us examine further the case where player A would be certain to extract at each
trial a ball which would count to that player one point, that is where we would have

p = 1, p1 = 0, q = 0,

and consequently

m = q′, m1 = 0, m′ = 0, m′1 = 0,

n = p′, n1 = 0, n′ = p′1, n′1 = 0.

12



The generating function of zx,x′ or the function (d) would be reduced to

t(1− q′t) + p′1t
2t′

(1− t)(1− q′t− p′tt′ − p′1tt′2)
,

and that of yx,x′ would be, hence,

1

(1− t)(1− t′)
− t(1− q′t) + p′1t

2t′

(1− t)(1− q′t− p′tt′ − p′1tt′2)
,

=
1

1− t′
+

tt′

(1− t)(1− q′t− p′tt′ − p′1tt′2)
.

In this last expression, the first term represents the generating function of y0,x′ , which
is equal to unity whatever be x′, and the second will give, by developing it with respect
to the powers of t and of t′, all the other values of yx,x′ ; now the coefficient of tx will
be

t′[q′ + (p′ + p′1t
′)t′]x−1

1− t′
;

whence it results that, if we reject from the development of the series

q′x−1

[
t′ +

(x− 1)

1

(
p′ + p′1t

′

q′

)
t′2 +

(x− 1)(x− 2)

1.2

(
p′ + p′1t

′

q′

)2

t′3 + · · ·

]
all the powers of t′ superior to t′x

′
, and if we made in that which remains t′ = 1, we

will have, by supposing x′ even and equal to 2r + 2, the coefficient of txt′x
′
, or [634]

yx,x′ = q′x−1



1 +
(x− 1)

1

(
p′ + p′1
q′

)
+

(x− 1)(x− 2)

1.2

(
p′ + p′1
q′

)2

+ · · ·+ (x− 1)(x− 2) · · · (x− r)
1.2 . . . r

(
p′ + p′1
q′

)r

+
(x− 1)(x− 2) · · · (x− r − 1)

1.2 . . . (r + 1)

p′r+1

q′r+1

[
1 +

(r + 1)

1

p′1
p′

+
(r + 1)r

1.2

p′21
p′2

+ · · ·+ (r + 1)r · · · 2
1.2 . . . r

p′r1
p′r

]
+

(x− 1)(x− 2) · · · (x− r − 2)

1.2 . . . (r + 2)

p′r+2

q′r+2

[
1 +

(r + 2)

1

p′1
p′

+ · · ·+ (r + 2)(r + 1)r · · · 4
1.2 . . . (r + 1)

p′r−11

p′r−1

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(x− 1)(x− 2) · · · (x− 2r − 1)

1.2 . . . (2r + 1)

p′2r+1

q′2r+1


and, in the case of x′ odd or equal to 2r + 1,

yx,x′ = q′x−1



1 +
(x− 1)

1

(
p′ + p′1
q′

)
+

(x− 1)(x− 2)

1.2

(
p′ + p′1
q′

)2

+ · · ·+ (x− 1)(x− 2) · · · (x− r)
1.2 . . . r

(
p′ + p′1
q′

)r

+
(x− 1)(x− 2) · · · (x− r − 1)

1.2 . . . (r + 1)

p′r+1

q′r+1

[
1 +

(r + 1)

1

p′1
p′

+
(r + 1)r

1.2

p′21
p′2

+ · · ·+ (r + 1)r · · · 3
1.2 . . . (r − 1)

p′r−11

p′r−1

]
+

(x− 1)(x− 2) · · · (x− r − 2)

1.2 . . . (r + 2)

p′r+2

q′r+2

[
1 +

(r + 2)

1

p′1
p′

+ · · ·+ (r + 2)(r + 1)r · · · 5
1.2 . . . (r − 2)

p′r−21

p′r−2

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+
(x− 1)(x− 2) · · · (x− 2r)

1.2 . . . 2r

p′2r

q′2r


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It is clear that player B is able to expect to win only as long as x is greater than
r + 1, or that x′ equal 2r + 2 or 2r + 1; and effectively, beyond this supposition, the
preceding values of yx,x′ become all equal to unity.

We will note also that player A has necessarily won the game when player B will
have drawn x − r − 1 black balls before having attained x′ points; but this last player
is able yet to have lost before having drawn the totality of this number of black balls,
that which makes that this question is not at all susceptible to return into that which
is treated in the analytic Theory, after the problem of points, as previously a similar
supposition has led us to this last problem.

§3. The problem of points having been the object of the researches of two great
geometers of the XVIIth century (3), and to some extent the first of this kind subject to [635]
analytic methods, one will be perhaps curious to see how this same problem is deduced
again, as corollary, from another question of probability, of which the solution will
offer besides a new application of the method of generating functions.

We draw successively from an urn, which contains a determined quantity of white
and black balls, a ball that we do not return after the trial, and we demand, after a
certain number of known drawings, what is the probability to complete the drawing of
such given number of white balls before that of such other number, given equally, of
black balls.

Let a and a′ be the numbers of white and black balls contained originally in the
urn, n the number of white balls that we are proposed to attain before having extracted
another number n′ of black balls; and let us suppose that after having drawn succes-
sively from the urn a ball without returning it, we have brought forth n− x white balls
and n′ − x′ black balls, x and x′ being then the number of white and black balls that
there remain to make exit in order to decide the question. Let us represent by yx,x′ the
probability to bring forth in the following drawings x white balls before x′ black balls,
or to attain the totality of n white balls before having extracted n′ blacks; we will have,
according to the known rules of probabilities, the equation

yx,x′ =
a− n+ x

a+ a′ − n− n′ + x+ x′
yx−1,x′ +

a′ − n′ + x′

a+ a′ − n− n′ + x+ x′
yx,x′−1.

Let us make

a− n+ x = s, a′ − n′ + x′ = s′ and yx,x′ = us,s′ ;

the preceding equation becomes

us,s′ =
s

s+ s′
us−1,s′ +

s′

s+ s′
us,s′−1,

and, by supposing [636]

u =
1.2.3 . . . s.1.2.3 . . . s′

1.2.3 . . . (s+ s′)
zs,s′ ,

it is restored to this form
zs,s′ = zs−1,s′ + zs,s′−1,

3Pascal and Fermat.
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an equation in the partial differences with constant coefficients, which must hold for
all the entire and positive values of s and of s′, by departing from s = a− n and from
s′ = a′ − n′, and gives consequently for the generating function of zs,s′

ta−nt′a
′−n′ A+A′

1− t− t′
,

A being an arbitrary function of t, and A′ an arbitrary function of t′. We are able
always to transform this expression into this one

ta−nt′a
′−n′A1 +A′1t

′

1− t− t′
,

in which A1 and A′1 are new arbitrary functions of t and of t′. In order to determine
them, we will observe that, y0,0 not being able to take place and yx,0 being equal to
zero, whatever be the entire and positive values of x, we will have

0 = us,a′−n′ =
1.2.3 . . . s.1.2.3 . . . (a′ − n′)

1.2.3 . . . (a′ − n′ + s)
zs,a′−n′ ;

consequently the generating function of zs,a′−n′ will be null, that which gives

ta−nt′a
′−n′ A1

1− t
= 0, and hence A1 = 0.

Moreover, y0,x′ being equal to unity for all the values of x′ from x′ = 1, we will have
similarly

1 = ua−n,s′ =
1.2.3 . . . (a− n).1.2.3 . . . s′

1.2.3 . . . (a− n+ s′)
za−n,s′ ;

whence we deduce, for the value of za−n,s′ or the coefficient of ta−nt′s
′

in the devel-
opment of its generating function, [637]

za−n,s′ =
(a− n+ 1)(a− n+ 2) · · · (a− n+ s′)

1.2.3 . . . s′
,

that which gives

ta−nt′a
′−n′ A

′
1t
′

1− t′
=ta−nt′a

′−n′ (a− n+ 1) · · · (a+ a′ − n− n′ + 1)

1.2.3 . . . (a′ − n′ + 1)

×

 t
′+

(a+ a′ − n− n′ + 2)t′2

a′ − n′ + 2
+ · · ·

+
(a+ a′ − n− n′ + 2) · · · (a+ a′ − n− n′ + x′)t′x

′

(a′ − n′ + 2) · · · (a′ − n′ + x′)
+ · · ·


The second member of this equation multiplied by 1

1− t
1−t′

will be therefore the gener-

ating function of zs,s′ ; by developing it with respect to the powers of t and next with
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respect to those of t′, it is easy to see that the coefficient of ts or of ta−n+x is

t′a
′−n′ (a− n+ 1) · · · (a+ a′ − n− n′ + 1)

1.2.3 . . . (a′ − n′ + 1)

×
[
t′ +

(a+ a′ − n− n′ + 2)

a′ − n′ + 2
t′2 + · · ·

]
×
[
1 +

x

1
t′ +

x(x+ 1)

1.2
t′2 + · · ·+ x(x+ 1) · · · (x+ x′ − 2)

1.2 . . . (x′ − 1)
t′x
′−1 + · · ·

]
,

and the one of t′s
′
, or of t′a

′−n′+x′ in this last expression, or zs,s′ , is equal to

(a− n+ 1) · · · (a+ a′ − n− n′ + 1)

1.2.3 . . . (a′ − n′ + 1)

×


x(x+ 1) · · · (x+ x′ − 2)

1.2 . . . (x′ − 1)
+
a+ a′ − n− n′ + 2

a′ − n′ + 2

x(x+ 1) · · · (x+ x′ − 3)

1.2 . . . (x′ − 2)
+ · · ·

+
(a+ a′ − n− n′ + 2) · · · (a+ a′ − n− n′ + x′)

(a′ − n′ + 2) · · · (a′ − n′ + x′)

 .
Now, by multiplying this value of zs,s′ by

1.2.3 . . . (a′ − n′ + x′)

(a′ − n′ + x+ 1) · · · (a+ a′ − n− n′ + x+ x′)
,

we will have, after all the reductions, for the expression of yx,x′ , [638]

yx,x′ =
(a− n+ x) · · · (a− n+ 1)

(a+ a′ − n− n′ + x+ x′) · · · (a+ a′ − n− n′ + x+ 1)

×

 1+
x

1

a′ − n′ + x′

a+ a′ − n− n′ + x′
+
x(x+ 1)

1.2

(a′ − n′ + x′)(a′ − n′ + x′ − 1)

(a+ a′ − n− n′ + x′)(a+ a′ − n− n′ + x− 1)
+ · · ·

+
x(x+ 1) · · · (x+ x′ − 2)

1.2 . . . (x′ − 1)

(a′ − n′ + x′) · · · (a′ − n′ + 2)

(a+ a′ − n− n′ + x′) · · · (a+ a′ − n− n+ 2)


Let us imagine actually a − n and a′ − n′ in the ratio of p to q, so that we have

a− n = pk and a′ − n′ = qk, and let us imagine that k becomes a very great number
or infinity; it is clear that the probability of the exit of a white ball or of a black ball in
the successive drawings will become constant and will be p

p+q for a white ball and q
p+q

for a black, and the probability yx,x′ will be reduced to this expression

yx,x′ =

(
p

p+ q

)x
[

1 +
x

1

q

p+ q
+
x(x+ 1)

1.2

(
q

p+ q

)2

+ · · ·

+
x(x+ 1) · · · (x+ x′ − 2)

1.2 . . . (x′ − 1)

(
q

p+ q

)x′−1
]

;

such is the formula to which the problem of points leads, and effectively we return to
the conditions of this problem by the supposition of k infinite.
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If we suppose n equal to a and n′ equal to a′, yx,x′ will express then the probability
of the exit of all the white balls remaining in the urn before all the blacks had been
depleted, and its expression will be changed into that here

1.2.3 . . . x

(x+ x′) · · · (x′ + 1)

[
1 +

x

1
+
x(x+ 1)

1.2
+ · · ·+ x(x+ 1) · · · (x+ x′ − 2)

1.2 . . . (x′ − 1)

]
,

which is reduced itself to
x′

x+ x′
.

The probability of extracting from the urn the totality of the white balls before that [639]
of the blacks is therefore to the contrary probability in inverse ratio of the number of
white balls to the one of the blacks.

We arrive to this last result, in an extremely simple manner, by means of combina-
tions; in fact, the probability of the exit of all the balls from the urn, in any order, by
color, will be

x(x− 1) · · · 2.1x′(x′ − 1) · · · 2.1
(x+ x′)(x+ x′ − 1) · · · 3.2.1

=
1.2.3 · · ·x′

(x+ 1) · · · (x+ x′)
.

But, in order that the white balls exit in totality first, it is necessary necessarily that
a ball of the color black exit last: by combining x′− 1 with x′− 1 the x+x′+ 1 ranks
of exit which are found before the last, we will form as many different rankings for the
balls of the color black, and as many orders of exit by color, which will comprehend all
those where one black ball exits in last place; now the number of these combinations is

(x+ x′ − 1)(x+ x′ − 2) · · · (x+ 1)

1.2 . . . (x′ − 1)
,

and by multiplying it by the probability common to each order of exit by color, we will
have the sought probability equal to

1.2.3 · · ·x′

(x+ 1) · · · (x+ x′)

(x+ 1) · · · (x+ x′ − 1)

1.2.3 . . . (x′ − 1)
=

x′

x+ x′
.

Remarks on generating functions.

§4. Let u be a generating function in one or many variables; each equation between
this function and its variables, linear with respect to u, rational with respect to the
variables, will subsist still if we pass from the generating functions to the coefficients,
among these same coefficients, and will give place to an equation in the partial differ-
ences; but if, in this equation in partial differences, we pass again from the coefficients
to the generating functions, we will no longer arrive to an equation rigorously exact, at
least if we restore at the same time the functions of the variables which have been able [640]
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to vanish in the first passage. Thus, in one of the questions that we have treated above,
the equation in the partial differences

zx,x′ = mzx−1,x′ +m′zx,x′−1 + nzx−1,x′−1

would give, by going up again simply from the coefficients to the generating functions,
this one

u = mut+m′ut′ + nutt′,

which is not at all exact; because it is easy to see that, according to the conditions of the
problem, it would be necessary to add to the second member the generating function of
zx,0 less this same function multiplied by m. This function of t, which it is necessary
to restore in the second member of the equation in order to complete it, is precisely
the arbitrary function that we have had to determine in the solution of this question. In
general, the functions to add in order to have still one equation in the passage from the
coefficients to the generating functions are the same as the arbitrary functions which
form the numerator of the generating function integral before it is developed.

For lack of having regard to these functions, we are able to fall into some grave er-
rors, by serving ourselves in this manner in order to integrate the equations in the partial
differences. For this same reason, the march followed in the solution of problems §§8
and 10 of Book II of the Théorie analytique des Probabilités is by no means rigor-
ous, and seems to implicate contradiction in this that it established a liaison among
the variables which are and must be always independent. Without entering into the
particular considerations which have been able to make it succeed here, and that it is
easy to know, we will show that the method of integration exposed at the beginning of
this Supplément is applied equally to these questions, and resolves them with no less
simplicity.

In the problem of §8, we have proposed to determine the lot of a number n of
players A, B, C, . . . of whom p, q, r, . . . represent the respective probabilities, that is
their probabilities to win a trial when, in order to win the game, there are lacking x trials
to player A, x′ trials to player B, x′′ trials to player C, etc. By naming yx,x′, x′′,... the [641]
probability of player A to win the game, we have the equation in partial differences

yx,x′, x′′,... = pyx−1,x′, x′′,... + 1yx,x′−1, x′′,... + ryx,x′, x′′−1,... + · · · ,

which gives for yx,x′, x′′,... this generating function

P +Q+R+ · · ·
1− pt− qt′ − rt′′ − · · ·

,

in which P, Q, R, . . . are as many arbitrary functions of the variables t, t′, t′′, . . . as
there are of these variables, by comprehending not at all t in the first, t′ in the second,
t′′ in the third, etc. Now, this function is able to be put under this form

P ′ +Q′t+R′tt′ + S′tt′t′′ · · ·
1− pt− qt′ − rt′′ − st′′′ · · ·

,

P ′, Q′, R′, . . .being, as above, arbitrary functions, the first of all the variables with
the exception of t, the second of all the variables of it excepting t′, the third equally of

18



all the variables except t′′, and thus consecutively. In order to determine them, we will
observe that, in yx,x′, x′′,..., two of the indices x, x′, x′′, . . .or a greater number are not
able to be nulls at the same time, since the game ceases when one of the players has
attained his points; moreover, y0,x′, x′′,... is equal to unity, whatever be x′, x′′, . . . ; the
generating function of this expression, or that which gives unity for the coefficient of
any product whatsoever t′x

′
t′′x
′′
t′′′x

′′′
. . ., is

t′

1− t′
t′′

1− t′′
t′′′

1− t′′′
· · · ;

consequently, we will have

P ′ =
t′

1− t′
t′′

1− t′′
t′′′

1− t′′′
· · · (1− qt′ − rt′′ − st′′′ − · · · ).

Each value of yx,x′, x′′,... in which another index than x is null being equal to zero, [642]
the corresponding generating function becomes null also; we will have therefore suc-
cessively

Q′ = 0, R′ = 0, S′ = 0, . . .

Hence, the generating function of yx,x′, x′′,... will be

t′

1− t′
t′′

1− t′′
· · · 1− qt′ − rt′′ − · · ·

1− pt− qt′ − rt′′ − · · ·
,

and the coefficient of tx, in the development of this function with respect to the powers
of t,

t′

1− t′
t′′

1− t′′
· · · px

(1− qt′ − rt′′ − · · · )x
;

whence it is easy to deduce the coefficient of t′x
′
t′′x
′′
. . ., or

yx,x′, x′′,... = px



1+
x

1
(q + r + · · · )

+
x(x+ 1)

1.2
(q + r + · · · )2

+
x(x+ 1)(x+ 2)

1.2.3
(q + r + · · · )3

+ . . . . . . . . . . . . . . . . . . . . . . . .


,

by taking care to reject the terms in which the power of q surpasses x′ − 1, those in
which the power of r surpasses x′′ − 1,. . .

In the problem of §10, we consider two players A and B of whom the skills are p
and q, and of whom the first has a tokens and the second b tokens; and we suppose that
at each trial, the one who loses gives a token to his adversary, and that the game finishes
only when one of the players will have lost all his tokens. We demand the probability
that one of the players, A for example, will win the game before or at the nth trial.

By representing by yx,x′ the probability of this player in order to win the game
when he has x tokens and when there are no more than x′ trials to play in order to
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attain the n trials, we arrive, by the first principles of the probabilities, to the equation [643]
in the partial differences

rx,x′ = pyx+1,x′−1 + qyx−1,x′−1,

which gives, for the generating function of yx,x′ ,

A+A′ +B′t

qt2t′ − t+ pt′
,

A being an arbitrary function of t, A′ and B′ two arbitrary functions of t′. In order to
determine them more conveniently, we will transform this generating function into this
one

A1t+A′1 +B′1tt
′

qt2t′ − t+ pt′
,

in which A1, A
′
1 and B′1 are, as above, arbitrary functions of t and of t′. Now A′1

pt′ is
the coefficient of t0 in the development of the function with respect to the powers of t,
or the generating function of y0,x′ ; but, by the conditions of the problem, y0,x′ is null
whatever be x′; consequently its generating function is also it; A′1 is therefore equal to
zero.

The coefficient of t′0, in the development of the generating function with respect
to t′, is −A1, that which is at the same time the generating function of yx,0, a quantity
which is null so long as x is less than the sum of the tokens or a+b, and which becomes
unity when x = a + b; A1 is therefore a function of t which has for factor ta+b, and
of which we are able to take no account in the numerator of the generating function,
because it must give only powers of t superior to ta+b, and we have seen it only to
have a generating function composed of the powers inferior to t, since x is able to be
extended only from x = 0 to x = a+ b.

The generating function of yx,x′ , thus limited between these values, is reduced
therefore to

B′1tt
′

qt2t′ − t+ pt′
,

which we are able to put easily under this form [644]

(Π)



B′1
p
t

1(
1−

1
t′+

√
1

t′2
−4pq

2p t

)(
1−

1
t′−

√
1

t′2
−4pq

2p t

)

=
B′1
p

t√
1
t′2 − 4pq


1
t′ +

√
1
t′2 − 4pq

1−
1
t′+

√
1

t′2
−4pq

2p t

−
1
t′ −

√
1
t′2 − 4pq

1−
1
t′−

√
1

t′2
−4pq

2p t

 ;

whence we deduce, for the coefficient of ta+b, the expression

B′1
p

1

(2p)a+b−1

(
1
t′ +

√
1
t′2 − 4pq

)a+b

−
(

1
t′ −

√
1
t′2 − 4pq

)a+b

2
√

1
t′2 − 4pq

.
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But this coefficient is the generating function of ya+b,x′ , a quantity which is equal to
unity; because it is certain that player A has won the game when he has won all the
tokens of B: moreover, x′ must be here zero or an even number, since the number of
trials in which A is able to win the game is equal to b plus an even number; and, in fact,
he must win all the tokens of B, and again win again each token that he has lost, that
which requires two trials. The series

ya+b,0t
′0 + ya+b,2t

′2 + ya+b,4t
′4 + · · · ,

which represents the coefficient of ta+b, is therefore equal to 1
1−t′2 , and we conclude

from it

B′1
p

(2p)a+b−1

1− t′2
2
√

1
t′2 − 4pq(

1
t′ +

√
1
t′2 − 4pq

)a+b

−
(

1
t′ −

√
1
t′2 − 4pq

)a+b
.

Now the coefficient of ta, deduced from the development of the function (Π), al- [645]
ways with respect to the powers of t, will be

B′1
p

1

(2p)a−1

(
1
t′ +

√
1
t′2 − 4pq

)a
−
(

1
t′ −

√
1
t′2 − 4pq

)a
2
√

1
t′2 − 4pq

,

and by substituting for B′1
p its value, we will have this coefficient or the generating

function of yx,x′ equal to

2bpb

1− t′2

(
1
t′ +

√
1
t′2 − 4pq

)a
−
(

1
t′ −

√
1
t′2 − 4pq

)a
(

1
t′ +

√
1
t′2 − 4pq

)a+b

−
(

1
t′ −

√
1
t′2 − 4pq

)a+b

or

2bpbt′b

1− t′2

(
1 +

√
1− 4pqt′2

)a
−
(

1−
√

1− 4pqt′2
)a

(
1 +

√
1− 4pqt′2

)a+b

−
(

1−
√

1− 4pqt′2
)a+b

,

that which is formula (o) of the Théorie analytique.
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