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The first researches that one has made on the summation of arithmetic progressions
and on geometric progressions contained the germ of the integral Calculus in finite dif-
ferences in one and two variables; here is how: an arithmetic progression is a sequence
of terms which increase equally, and it was necessary to find the sum according to this
condition; it is clear that each term of the sequence is the finite difference of the sum of
the preceding terms, to that same sum augmented by this term; one proposed therefore
to find this sum according to the nature of its finite difference; thus by whatever manner
that one is arrived there, one has truely integrated a quantity in the finite differences.
The geometers who have come next have pushed further these researches; they have
determined the sum of the squares and of the superior and entire powers of the natural
numbers; they have arrived there first by some indirect methods: they did not perceive
that that which they sought returned to finding a quantity of which the finite difference
was known; but as soon as they had made this reflection, they have resolved directly,
not only the cases already known, but many others more extended. In general, ¢(x)
representing any function whatsoever of the variable x, of which the finite difference
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is supposed constant, they have proposed to find a quantity of which the finite differ-
ence is equal to that function, and this is the object of the integral Calculus in the finite
differences in a single variable.

Similarly, the research of the general term of a geometric progression returns to
finding the x term of a sequence! such that each term is to the one which precedes it
in constant ratio. Let y,_; be the (x —1)* term and y, be the 2 term: the law of the
sequence requires that one have y, = py,_1, whatever be x, p being constant. Now it is
clear that, in whatever manner that one is arrived to find yy, one has veritably integrated
the equation in the finite differences y, = py,_. Next, one has generalized this research
by proposing to find the general term of the sequences such that each of their terms is
equal to many of the preceding multiplied by some constants any whatsoever; these
sequences have been named for this récurrentes. One has arrived first to find their
general term by some indirect ways, although quite ingenious; one did not perceive
that this returned to integrating a linear equation in finite differences; but, when one
had made this reflection, one tried to apply to these equations the methods known for
the linear equations in the infinitely small differences, with the modifications that the
assumption of finite differences requires, and one resolved in this manner some cases
much more extended than those which were already.

Mr. Moivre is, I believe, the first who had determined the general term of the re-
current sequences; but Mr. de Lagrange is the first who is aware that this research
depends on the integration of a linear equation in finite differences, and who had ap-
plied the good method of undetermined coefficients of Mr. d’Alembert (see Vol. 1
of the Mémoires de Turin). 1 myself have proposed next to deepen this interesting
calculus, in a Memoir printed in Volume IV of those of Turin;? and next, having had
occasion to reflect further there, I have made on this new researches of which I will ren-
der account shortly. I must observe here that Mr. the marquis de Condorcet has given
excellent things on this matter, in his Traité du Calcul intégral, and in the Mémoires de
I’Académie.

It was until then only a question of equations in ordinary finite differences and
of the sequences which depend on them; but the solution of many problems on the
chances has led me to a new kind of sequence which I have named récurro-récurrentes,
and of which I believe to have given first the theory and indicated the usage in the
Science of probabilities (see T. VI of Savants étranges.’) The equations on which
these sequences depend are nearly, in the finite differences, that which the equations
in the partial differences are in the infinitely small differences; that which I have given
on these equations is only a trial: in deepening them, I have seen that they were quite
important in the Theory of chances, and that they gave a method to treat them much
more generally that one had done yet: this is that which engages me to consider them
anew; but, the new researches that I have made on this object supposing those that I

"Translator’s note: The word suite is used to refer to both a sequence and a series. It is rendered according
to its usage.
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have already given, I am going to begin again here all this matter.
1L

One can imagine thus the equations in finite differences; I imagine the sequence

Y1,Y2,¥3,Y4,¥5, -+, Yx

formed following a law such as one has constantly
(A) Xy = Myyy + NeAyy + PoA%yy + .+ SeA Yy

the numbers 1, 2, 3, ..., x, placed at the base of y, indicating the rank which y occupies
in the sequence, or, that which returns to the same, the index of the series; the quantities
Xy, My, Ny, ... are some functions any whatsoever of the variable x, of which the differ-
ence is supposed constant and equal to unity. The characteristic A serves to express the
finite difference of the quantity before which it is placed, as in the infinitesimal Analy-
sis the letter d expresses the infinitely small difference of the quantities. This put, the
preceding equation is an equation in finite differences, which can generally represent
the equations of this kind, where the variable y, and its differences are under a linear
form.

Although I have supposed the constant difference of x equal to unity, this diminishes
nothing from the generality of the preceding equation (A); because, if this difference,
instead of being 1, is equal to g, one will make g =/, and y, being a function of x will

become a function of gx’; I name y, this last function. Now one has, by hypothesis,

Ay, = Yxt+q — Yx :f(x+Q) _f(x)
:f[‘I(xl +a)] 7f(qx/) =Y+~ W = Ayy,

the constant difference of x’ being 1. Similarly,

2 2
Ay = Yx+2¢q 72yx+q + Y = Y42 *Zyx’+1 +y¢ =A%y,

and thus of the remaining. Equation (A) will be therefore transformed into the follow-
ing
Xy =Myyy +NoAyy +...+SuAyy,

in which the difference of x’ is equal to unity.

One can form easily other differential equations, in which y, and its differences
would enter in any manner whatsoever; but those which are contained in equation (A)
are the only ones which it is truly interesting to consider.

Before researching to integrate them, I am going to recall here a principle quite
useful in the analysis of the infinitely small differences, and which applies equally and
with the same advantage to finite differences; here is in what it consists:

Each function of x which, containing n arbitrary irreducible constants, satisfying
for yy in a differential equation of order n, between x and yy, is the complete expression
of yx-

By irreducible constants, 1 intend that they are such that two or many can not
be reduced to one alone; it follows thence that, if a function containing » irreducible



arbitrary constants satisfy as y, in a differential equation of order n — 1, this equation is
surely identical; because, if it was not, the most general function of x which was able
to satisfy for y, would contain only n — 1 irreducible arbitrary constants.

For the convenience of the calculus, I will suppose that the quantities noted in this
manner, 'H , ’H y...,0r "M , M , ..., express some different quantities and which can
have no relation among themselves; but these here, Hy, H», H3, ..., Hy or M, M, M3,
ldots, M, represent the different terms of a sequence formed according to one law any
whatsoever, the numbers 1, 2, 3, ..., x designating the rank of the H or of the M in the
sequence. This put, since one has

Ayy = Yxi1 — Y,
AY?yx = Yera = 2Vt 1 + Y,
A3yx = Y42 = 3ye2 +3Yxt1 — x,

I am able to give to equation (A) this form

Xx:+YX(Mx_Nx+Px_--')
+yx+1(NX_2Px+...)

+YxtnSx-

whence it results that each linear equation in finite differences can be generally repre-
sented by this here

(B) Y =Hey,1+ leYx72 + 2nyx73 +- n_le)bcfn + X5

the equation
Yx = nyx—l + X

is of the first order, this here
Ye = Hyy—1+ leyx—Z + X

is of the second order, and thus in sequence.

As in the series I will have need of characteristics in order to designate the finite
difference of the quantities, their finite integrals, the product of all the terms of a se-
quence, I will serve myself for this with the following.

The characteristic A placed before a quantity will designate for it, as above, the
finite difference: thus AH, will express the finite difference of H,; the characteristic
Y. placed before a quantity will designate for it the finite integral: thus H, will signify
the finite integral of H,; finally the characteristic V will designate the product of all the
terms of a sequence: thus VH, will represent the product Hi HyH3 . .. H, of all the terms
of the sequence Hy, Hy, H3, ..., Hy.
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PROBLEM 1. — The differential equation of the first order
Yx = nyx—l + X

being given, one proposes to integrate it.
I make in this equation y, = u,VH,; it becomes

uyVHy = Hyuy \VHy | +Xy;

but one has
H\VH,_1 =VH,,
hence X
X X
= _ A 1 = ;
Uy = Uy—1+ VH, or Ux—1 VH,
and, as this equation holds whatever be x, one will have
Al — Xx+]
X v Hx+l )
hence, by integrating,
Xit1
—A S
e * VI'Ix+1

A being an arbitrary constant. One has therefore

Xt
=VH, | A .
- ! ( * Z VHerl
If H, was constant and equal to p, one would have

X
VH,=p* and  y,=p (AJerxE) -

Iv.

PROBLEM II. — The differentio-differential equation

(B) Yx=Hyyx 1+ le)’fo + 2nyx73 +...+ nl Hyyx—n+Xx
being given, one proposes to integrate it.

I make
© Yx = 0yx—1 + T,

o, and T, being two new variables, and I conclude from it the following equations:

Yx—1 =0 —1Yx—2 + 7;(71 )
Yx2 =0 2yx—3+ Ty 2,
Yx-3 =0—3Yx—4 + T3,

Yxontl =0 pt1Yx—n+ Tiont1;



I multiply the first of these equations by — ! B, the second by — 2 B, the third by — >,
... and I add them with equation (C): this which gives me
ye=(0c+ " B)yx—1 + (= Bat + > B)yea
+ (_zﬁax—Z + 3ﬁ)YX—3 +... - nl Bax—n+l))x—11
+ T BTt = BTz — .. =" BT

By comparing this equation with equation (B), one will have
1°
T, = lﬁTx—l + 2ﬁTx—2 +...+ nl ﬁn—n-&-l + X

2 ° The following equations:

1ﬁ+ax :Hm
2ﬁ_ lﬁax71 :lHXa
3[3—2[3%—2=2Hx

Thence one will conclude

1
ﬁ =H, — Oy,
2 1
B: Hx'i'axlex_axaxflv
3 2 1
ﬁ ="Hy+ 0 2 Hy+ 0 10 2 Hy — 060 Ox—2,
nl ﬁ = nisz + O—n+t2 "3 H,+ Oy —n4300x—n42 n74Hx +...

n—1 Hx

— OOy . Oy—py2 = — )
Ox—n+1

because of the equation
-1 ~1
— ﬁaxfnJrl =""Hy;

one will have therefore, in order to resolve the problem, the following two equations:

T, :(Hx_ le)qu + (le'i‘axlex_ axaxfl)T)wZ"‘ cee

(D) n—le
- 7’.‘)(7}14’1 +XX7
Ox—n+1
1 2 n—1
H H, H H,
(E) 0=rt——>— - a _———
O O Otx—1 O Otx—1 Olx—2 O ... Ox—pn+1

Equations (D) and (E) are of a degree inferior to the proposed, and equation (D)
is of the same form; now it is not necessary to integrate generally these equations in



order to integrate equation (B) of the problem; it suffices to know for a, a quantity
which satisfies equation (E). I name §; this value; one will substitute it into equation
(D), which I name (D) after this substitution, and one will seek the complete integral
of equation (D'); next, by means of the equation y, = 8,y,_1 + Ty, one will conclude,
by integrating by problem I,

T
yx:V6x (A+ZV6++1|)’

A being an arbitrary constant.
This equation is the complete integral of equation (B), because, equation (D') being
necessarily of order n — 1, the complete expression of 7 contains n — 1 irreducible ar-

bitrary constants; hence, V6, (A + Tei1 ) contains n arbitrary constants. These con-
y Vs y

stants are moreover irreducibles, because Vo, Y, Vg* +11 contains in it n — 1 irreducibles,
X

and none of them is reducible with the constant A.

The preceding expression of y, can serve to make known the integral of equation
(B) of the problem; because, since equation (D’) is linear, one can suppose that the
expression of 7, has this form

) 3

1
Tt
To=Vi | '4A+) 2
( Z VAX—H
', depending on the integration of a linear equation of order n — 2; one has therefore

1

Tt
A _’_ZZV)LXL )
Vit Vo1 |’

»=V3 [A+'AY

by continuing to reason thus, one will see that the expression of y, is of this form
e =AVS + 'AV!S, + 2AV2 6, +.. .+ 1AV IS + Ly,

A, 1A, 2A,... being arbitrary.
If one supposes X, = 0 in equation (B), it is easy to see, by the sequence of opera-
tions that I just indicated, that L, will be null; thus, in this case

e =AVS + 'AV!IS +.. .+ lavils,

0, satisfying under the assumption for @, in equation (E); 18, 28, ... will satisfy

similarly; because, since the equation y, = AV Ls,, for example, satisfies equation (B)
by supposing X = 0, one will have

V96 =HV'6 1+ 'HV'6 2+...,

hence



V.

I suppose, in equations (D) and (B), X, = 0; I will have the following two expres-
sions of yy:

Tit1
1 —vs (A4+Y =L
€)) Yx x( +ZV5,C+1)’
@ W= AVS, 4 AV 64 2AV2S, .+ AV,

These two expressions, different in appearance, must really coincide; I suppose there-
fore that the complete integral of equation (D’) is

T.="AR, + 2A'R,+ ...+ " TA"2R;

by substituting this value of T into equation (1), one will have

1 n—2
Ryt 2 Riti -1 Ryt
=V§ [A+'A= 424 oA )
> ( Vo1 | Vi Vo

By comparing this last equation with equation (2), one will have

Ry
vs Y L —vls
xzvaerl =
1
Ry 2
Vs —v2s,,
XZV5x+1 !

Therefore vls
Ry = V&, A Vax):l ,
IR, = VSXAV;;X]] :
2R, = V8.A VV;‘?‘_‘II ,

Therefore, if I know how to resolve equation (B) by supposing X, = 0, I will
know how to resolve equation (D’) by supposing similarly X, = 0. Let therefore
Uy, ! Uy, 2u,c, ... be the particular values of y, in equation (B), so that its complete inte-
gral is

Ve = Auy + AV + %A%+ + 1A Ty,

one will have
ux:V(sxa lux:Vl(sxa



and the complete integral of equation (D’), by supposing X, = 0 in it, will be

1 2 n—1
Uy Ux—1 _ Ux—1
+ 2 Au,A +o " A A
Ux—1 Ux—1 Ux—1

T, = 'Au,A

Presently, if I know how to integrate equation (D) by supposing X, anything, I will
be able, under the same assumption, to integrate equation (B), since one has, by that

which precedes,
T,
yx:”x(A—l—Z x+1);

Ux+1

therefore the difficulty to integrate the equation

(B) Yx =Hyyx-1+ le)’x—Z +...+ Hyyy—n + Xy,
when one knows how to integrate this one

(b) ye=Hyer +  Hywa oo+ " Hoya,

is reduced to integrate the equation

n—1

~—Tent1 + X,

(D) To=(H=8)T1+...~ 5
x—n+1

which is of degree n — 1, and when one knows how to integrate by supposing Xy =
0; one will make similarly the integration of (D) to depend on the integration of an
equation of degree n — 2, and thus in sequence; whence there results that the equation

Ye=Hye 1+ Hyeat . 4" Hyrn+ X,
is integrable in the same cases as this one
Ve =Hye1 oo+ " Hoy,
VL

The process which I just indicated in order to restore the integral of equation (B)
to that of equation (b) can serve to demonstrate the liaison which these two integrals
have between them; but it would be quite painful to employ it to integrate equation (B).
It would be therefore very useful to have immediately the general expression of y, in
equation (B), when one has that of equation (b).

I take for this equation

T,
Yx = Uy (A+Z x+1)’

Uyt+1

T, being supposed to be the complete expression of T in equation (D). Now, this
. . . . 1 11 21
equation (D) being of the same form as equation (B), if one names u,, ! Uy, 2ux, ...the



particular integrals of 7 in equation (D'), when one supposes X, = O there, one will
have, in the same manner and whatever be X,

1
Tit1

] b

Ux+1

T;c:glx 1A+Z

', being the complete expression of "7, in an equation of order n — 2, which I name
(D) and which results from (D’) in the same manner as this one results from equation
(B); one will have similarly

2
Tx+ 1
2

2
17}:”)5 2A+Z

>

Ux+1

and thus in sequence until one arrives to the equation of the first order
"R = ST T+ X
of which the integral is

Xx+ 1

n—1 ’
U x+1

n—ZE:”Ztlx n—1A+Z

If one substitutes presently into the expression of y, the value of T into 'T,, that
of 17} into 2Tx, etc., one will have

n—1

1 2
) y)c:ux{A—i—Zqu <1A+ZL:X+1 lZA...+an;+n—l (”‘A+Z,,)_(’{+") D}

u
x+ Ux+1 U x4+n—1 U x+n
. .12 . .
It is necessary presently to determine u,, u,, . ..; now one has, by the previous Arti-
cle,
1
1 Ux—1
uy =R, = uxA )
Ux—1
similarly
2
1 Uyx—1
Uy = UxA >
Ux—1
3
Ux—1
Uy = UyA ,
Ux—1

10



one will have likewise

Uy = UyA ; ,
Ux—1
2 1 Zl}t 1
e
Uy = UyA ] ,
Ux—1
31
2 1 Ux—1
Uy = Uy 1 ,
Ux—1

formula (K) will become

Ly L s
Aty a AL+ YA
X

©0) ye=w{A+Y A 1 L TSy

2

u
Ux+1 U x+n-2

if one knows only the number n — 1 of particular integrals of y,, in the equation
Yx = Hyyy 1+ ]nyxfz +...+ nl Hyyx—n,

the integration will be of difficulty no longer; I suppose that this is the integral "y
Lo . _ . 12 .
which is unknown; since one knows u,, 'uy, ..., " Zu,(7 one will know u,, u,, ...until

n—1 . . n—=1 . . . .
u » exclusively. In order to determine u ., it is necessary to integrate the equation
"R =8 T + X,

by supposing X, = 0, this which will be easy by Problem I if one knows S. In order to
find it, T observe that, in equation (D’), the coefficient of T,_1 is

Ux
Hx - 5x = Hx - )
Ux—1
because of
u
5= —.
Ux—1
Similarly the one of ! 7,_;, in equation (D"), is
1
Uy Ux
HX - u - 1 9
x—1 Up_|
and thus in sequence; hence,
1 n—2
u u u
Sy=Hy——— ——.. . ——=
MX71 1 n—2
Ux—1 U x—1

Xx+n

—1
U x+n



If, instead of knowing the integral of the equation
Yy =Hyyx1+...+ "71nyx7m

one knows a number n or n — 1 of values for ¢, in equation (E), the preceding formulas
will serve equally, because Oy, s, ... being these values, one has

uy = Vo, luxzvléxv
VIIL.

Formula (O) has not at all yet the total degree of simplicity that the complete inte-
gral of y, can have, because one has seen (Art. IV) that this integral has the following
form

ye=Aup+ "Alue+ .+ "A 4 Ly

it is necessary therefore to restore equation (O) to this form; for this, I divide equation
(O) by uy, and I conclude from it, by differentiating it,

1 11 1n—2
- Uy— u U xin— Xyin—
AL AL ALY A A 4 Y A <”‘A+Z”" 1 )

Uy Uy 1 n—2 n—1
ol ol Uy U x+n-3 U x4n—1

1
Ux—1

whence one will conclude, by dividing by A and differentiating,

Ux—1

AYx—Z l}t
Uy x—1
A = A——[?A+ ...
Ux—2
s Uy—1

One will have therefore, by continuing to differentiate thus, an equation of this form

X

n—1 x—1

A+Y =
U x—1

= Yayx+ lYX)’X—l + 27xy,v—2 +...+ nilyx)’x—n-ﬁ-la

Yo ! Y%, - . . being some functions of u,, 1u)(, ... and of their finite differences. I observe

. 1 2 3 . .
now that, in order to form the values of u,, uy, uy, ..., I have considered (preceding
Article) the quantities u,, ! Uy, zux, ... in this order

1 2 n—1_ .
Uy, Uy, Ux,..., Uy,

but if, instead of that, I had considered them in the following order

1 2 n—1
Uyy Uy Uxy..., Uy,

I would arrive to the following equation

n— X n
1A+Z(,1_1+1 = () + gyt + oo 7 ) Yemnt 1

u x+l)

12



-1 . . -1 .
(nu x), (%), - .. being that which "u x Yy -.. become when one changes u, into

1ux, and lux into u,. If I had supposed X,+; = 0, I would have arrived to the two
equations

A= gyt e s
A= )y vy T Ry

in which the constant "' A is clearly the same, since I have supposed, in order to form
the one and the other equation, that the complete value of y, is

ye=Aug+ A e+ A
One will have therefore, by comparing these two equations,

Yevx + l/yxyx—l +...+ nil%cyx—n—}—l
= () C ot o+ 7 Ve

an equation which must be an identity; because, if it were not, this equation being
differential of order n — 1 would have however for the complete integral

Ve =Aux+ ...+ " 1A"

an equation which contains n arbitrary constants, this which would be absurd (Art. II).
One has therefore

X X
n—1 x+1 _ n—1 x+-1
Aty ———=""lA+Yy =,

n
( u x+1) U x+1

n—1 n—1
U x+1 ) = U x+1-

. n—1 . . 1
Thus the expression of u , remains always the same, whether one changes u, into ~ u,,

hence

. . . .. n—1
and lux into u,; one will be assured in the same manner that if in u , one changes u,
into zux, and zux into u,; or lux into zux, and zux into lux, and generally kux into ‘u,,

i . L. . n—1 . .
and 'u, into kux, k and i being less than n — 1, the expression u , will always remain

the same, and that thus, whatever order that one gives to the quantities u,, 1ux, 2ux, e

. -1 . . . . . _
in order to form " u x this expression will remain always the same, provided that " : Uy

is considered as the last of these quantities.

n—1 _ . . . _
I make u 11 =" lsz; next, instead of considering " ]ux as the last of the

n—2

quantities uy, lux,... I suppose actually that u, is this last; let ”72zx+ 1 be that

which becomes then "~ !z, 1, that is to say when one changes =2y into " u,, and

n=l u, into n=2 uy. One will have, by a process similar to the preceding,

X

) +1 1 -1

" A+Z#Z+lzl’xyx+ Yyeort A" Yeni,
X

13



-1 2

7 ! Yoo being that which ¥, lyx, ... become when one changes " u, into " “uy
n—1

and " 2u, into "' uy; one will have similarly

X,
-3 +1 1 -1
" A+Zn,3x =Yyt Yyt "y Yeonits
Z)CJrl =X =X =x
"3 1,7, 'y being that which ""'zi 1, %4, 74 ... become when one changes
"1y into "“2uy and "2 u, into " 'u,. This set, by disposing in the following order

all the equations that one can form thus

_ Xet1 _
! 1A+Z - :’)/)cyx+1’}6€yxfl+2%cYX72+--~+n IYXYxfnJr]a

n—1
Zx+1

n— Xit1 .
"2A + Z n72X+ =¥ Dx + ! Y Yx-1 + 2 Y Yx—2 .o+ ! Y Yx—n+1,
>) Zepl - - -

X1l 1A % 14
A+Z X+l Y yx"‘n_x yx71+nfxlyxiz—|—...+nflxyx7n+lv

and adding them altogether, after having multiplied the first by "1y, the second by

"2y, etc., finally the last by u,, one will have an equation of this form

_ X,
Ayx 4.+ " llxyxfnJrl =Ux (A +ZX+]>

Zx+1

X
+]ux<]A+Z 1"“)

Zx+1
F o

X
-1 -1 +1
+" X<n A+anlx )’
2x+1

this which gives, by making X, =0,
Afxyx + lafxyx—l +...+ nl 2fxy)c—n-&-l = Au, + lA ! Uy +...+ nilAnil Uy,

but one has in this case
Ve = Auy + 1Alux—i—...,

hence
Vx = Aoy + 1)L)cyxfl +...+ ! AYx—nt1-

Now this equation must be an identity, because otherwise, although of order n — 1, its
integral would contain the n arbitrary constants which the complete expression of y,
contains; one has therefore for the complete integral of equation (B) of Problem II,

14



whatever be X,
Xx+1>
=u, (A+y —
Y ( y X

X
+ 1y, 1A+le+1

Zx+1

n—1 n—1 Xx+1
+ Uy A+Z n—1 ’
Zx+1

Thence results this quite simple rule, in order to have the complete integral of the
equation
yr = Hyyx—1+ le)’x—Z +.+ Hyyy—n + X,

when one knows how to integrate this here
Yx = Hyyr1+ le)’x—Z +...+ nl Hyyx—n.

Let
ye=Auc+ Al u+ AU+ Ay,

be the integral of this last, and let one make

1 11 12

ey = u AL iy = A ity = 1, A
Ur—1 Ux—1 Ux—1
21
Uy—1 12 1 Ux—1
Uy = UyA ” , Uy = UyA— e ,
x—1 Up_|
3 I
ZMX—MXA le> zlix—’}‘x 1)#17
Ux—1 Uy

n—

. . n—1 n—1 . . _
until one arrives to form u ., let u , = ]zx. If, in the expression of " ]zx, one

changes =1y into ""%u, and "*u, into "~ 'u,, one will form "~?z,; if, in the same
expression of "~ z,, one changes "~y into "> uy, and reciprocally "> u, into " uy,

one will form "3z, and thus in sequence; the complete integral of equation

(B) Yx = Hyyy 1+ 1Hx}’x72 +-+ n_leyxfn + X
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will be

X
+lu [ Tag Y
H) Zxt1

I take now the equations (>) of the preceding Article; they give

X
—1 +2 -
TIAY ST = Y e T a2,

Zx+2
Xey2 Yol "y
X
A+ZX7+ == a1t et Yx—n+25
Zx42 n—1 n—1

if one multiplies the first by "~ !u,, the second by " 2u,, ..., one will have, by adding
them together, an equation of this form

Ayri1 + 1)vxyx+2 +...+ ol AYx—nt2 = Aty + Al Up+...+ nlpnl Uy,
therefore
Ayxs1+ : Ayrp2+ ...+ el AYx—nt2 = Yxs
an equation which must be an identity; hence,

X
Yx =Ux (A“V‘ZM)

Zx+2

X
+]Mx IAJFZ 1x+2
Zx+2

One will find similarly

X
Yx =Ux (A+ZM>

x+3

X
+1ux 1A+le+3
Zx+3

16




and thus in sequence until one arrives to this last equation inclusively,

Yx =Ux (A+Z)()(Jﬂ1>

Zx+n
X
+lux 1A+le+n
Zx+n
R

All these equations being the complete integral of equation (B) are identically the same;
in comparing them together, one will form the following equations

1 n—1
Uy Uy Uy

+1 —|—...+”71 =0.

Tx+1 Zx+1 x+1
1 n—1
X x Uy

+ 1 + ...+ 1 =0.
Tx+2 Zx42 x+2
................................. s

1 n—1

Uy Uy Uy
+ ERp— =0
Lx+n—1 x+n—1 Zx+n—1
1X.

The integration of equation (B) of Problem II being reduced to the integration of
this same equation when X, = 0, there is no longer a question to resolve the problem but
to integrate this here, but this appears very difficult in general; thus I will limit myself to
the particular cases. Here is one quite expanded of it, in which the integration succeeds,
and which embraces all the cases already known; it is the one in which one has

(B) Yx =Coryx—1+ 1C¢x¢x71)’x72 +...+ nl COxdx—1-- - Oxni1Yxn-

If ¢, = 1, one will have the equation of the recurrent sequences.
Equation (E) of Article IV becomes in this case

) 01 Co: 'CO0r  "TICOG i G
O O Otx—1 Oy ... Ox—pn+1

Now (Art. IV), it suffices in order to integrate equation (B’) to know a number n of
values for o, in equation (E’). Let therefore @, = a¢,, a being constant, and equation
(E') will give

(h) an:Can—l+lcan—2+2can—3+“.+nflc;
whence one will have a number #n of values for a, and consequently for @, since o, =
agy.

Let p, ! D, 2 Pyeees -l p be the different values of a in equation (h). One will have
(Art. IV)

Oy = pox, 16x: IP‘PXa 25)6: 2p¢x7

17



Now one has (Art. V)

Ux :V5x = ¢1¢2¢3 oo ¢xpxa
Yy =V 8 = ¢10005...0.' P,
The complete integral of equation (B’) is therefore

Vo= 010205 §(Ap*+ A p AT Y,

One will determine the arbitrary constants A, IA, 2A7 ... by means of n values of y,,
under as many particular assumptions for x. Let

y1:M7 y2:1M7 MR yn:nilM;

and one will have

M 1 e
1

'M

¢102

M

¢10203

n—1

0102...0,

In order to resolve these equations, one can make use of the ordinary methods of elim-
ination: but here is one of them which appears to me simpler.
I multiply the first equation by "=1p. and I subtract it from the second; I multiply

:Apn+lAlpn—l—2A2pn—|—...+1171An71pn,

similarly the second by -l p, and I subtract it from the third, and thus in sequence, this
which produces the following equations:

'M M

0102 ¢
‘M 1Mn—1

010205 4162

n—1 1

p=Ap(p—"""p)+ A" p('p—"""p)+...+ " A p(" P p—"""p),

p=Ap*(p="""p)+ A PP p=""p) A TPATT (" p =" ),

-1 2
" M _ ! M — _ 2 n—1
01 O P1...Pp1

I multiply again the first of these equations by ”_2p, and I subtract it from the
second; I multiply similarly the second by n-2 p, and I subtract it from the third, this

18



which gives

2 1
M _ M(nflp_n72p)+gn71 n—2
010203 192 01
=Ap(p—"""p)(p—""p)
+'ap('p="""p)('p—""p)
A
_|_n—3An—3 (n—3p n—lp)(n—3 n—2p)’
3 2 1
M _ M (n—lp_n—Zp)+ M n—lpn—3p
01020301 $10205 $102
=Ap*(p="""p)(p—""p)
i P
+ n73An73p2(n73p_ nflp)<n73p_ anp)7
I A ;

by operating on these last equations, as on the previous, one will have

3M ZM n—1 n—2 n—3
P1920301 ¢1¢2¢3( p="Tp )
1
M n—2 n—1_\n-3 n—1_n—2 Mn—l n—2_n-—3
+ 102 ("p+" )" p+ ] o
=Ap(p—"""p)(p=""P)p—"""P)+...,

and thus in sequence.

Thence it is easy to conclude that, if one names:

f  the sum of the quantities ' p, *p, 3 p, ..., "' p,
h  the sum of their products two by two,

i the sum of their products three by three,

q  the sum of their products four by four, etc.,

' the sum of the quantities p, 2p, >p, ..., "' p,
'h  the sum of their products two by two,

i the sum of their products three by three, etc.,

and thus in sequence, one will have

UM = G f M A 0 h" M — G 10 2i" M

$10203...0u0(p— "P)(p—2P)(P—"p)...
lA n—lM_¢,11fn—2M+¢n¢n71lhn—3M_.“

T 01620500 p(p—p)("p=2p)("p—2p)..




One can determine in a quite simple manner the quantities f, A, i, g, ! f, 1h, ¥ , 1q, N
I take for this the equation

(h) a"—Ca 't e =0
I divide it by a — p, and the resulting equation will be
A"V = fd"r—hd" 7 —id" 4 gd" T+ ... =0.
I multiply this result by a — p, and I will have the following equation
d'—(p+f)a"" + (pf +h)d"? = (ph+i)ad" >+ ... = 0;

I compare it with equation (%), and I conclude from it

f:+cfp7
h=='C=pf,
i=+4°C—ph,
and, consequently,
1 1
f:+C_ P,

th=—lc—1ply

I have supposed until here that all the roots of equation (%) are unequal, but it can
happen that one or many of these roots are equal among themselves; here is in this case
the method that it is necessary to follow.

I suppose that one has p = ! p; one will make ! p = p+dp, and the equation

yx:¢1¢z¢3...¢x(Apx+lA]px+2A2px+...+"7]A"7]pX)

will give, by reducing (p + dp)* into series,

-1 2
PSS P PR Y eI it VA | L LI
p 1.2 p?

Let
dp
P

B and D being some arbitrary and finite constants; ' A will be therefore infinitely great

A+'A=B and 'AZZ =D,

2 3
of order -; 'A4Z- 1A92" will be infinitely small. Hence
a 7 »

Ve =010s... 0P (B+Dx)+ A p +3A3p" ...
If, moreover, one has p = 2 p, one will make 2 p = p—+dp in this expression of y,, and
one will have

d dp? x(x—1
yx=¢1¢2...¢x{p" {B—i—zA—i—(D—i—zA;)x—i—zA;zx(xlz )+...]+3A3px+...}.
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Let
dp* |
2

dp

A+B="'B, D+°’A D and A E,
p

]B, 'Dand 'E being some arbitrary and finite constants; one will have

—1
yx_(pl(pz...(px{p"{IB+1Dx+1Ex(x12>+..} +3A3px—|—...};

if moreover one had p = 3 p, one would have

-1 1) (x—2
yxZ(Pl(]h...(Px{Px{23+2Dx+2Ex(xlz ) f2prs 1%(; )}+4A4px—|—...},

and thus in sequence; one would determine the arbitrary constants, at least of n partic-
ular values of y,.
If equation (%) has two imaginary roots p and ! p, one will make

p=a+bv—-1 and 1p:a—b\/—l.

Let
4 _ cos and L =sing;
Vaa+bb 1 Vaatop o

one will have
Ap*+ 'A' p* =(aa+bb)2[A(cosq+v/—1sing)* + 'A(cosqg — v/ —1sing)"]
—=(aa+bb)2[(A+ 'A)cosgx+ (A — 'A)v/—Tsingx)"]

because
(cosg++/—1sing)* = cosqx++/—1singx.

Let
A+'A=B and (A-'A)v/—1="'B,

Band 'B being reals; one will have
Ap*+TA p* = (aa+bb)? (Bcosgx+ ' Bsingx);
one will have therefore then
YV=¢10...0; [(aa+bb)%(Bcosqx+ 'Bsingx) +2A%p*+...|;

it will be the same process if there were a greater number of imaginaries.

If one supposes, in the preceding calculations, ¢, = 1, one will have the case of the
recurrent sequences. Thence results this theorem:

If one names Y, the general term of a recurrent sequence, such that one has

Y, =CY 1+ 'CYrn+...+ " CY,,,

21



the general term of a sequence such that one has

Yx = C¢xyx71 + : C¢x¢x71yx72 +...+ =l C¢x e ¢x7n+1yx7na

and in which the arbitrary constants which arrive by integrating are the same as in the
preceding, will be

Yr=0102...OYx.

This is it of which it is easy to be assured besides; because, if one substitutes this
value of y, into the equation
Ve =COryx_1+...,

one will have
0.0 Y, =Co10r...0. 1 +...,

hence
Y,=CYe 1+ 'CYrn+...,

an equation which holds by assumption.
X.
When one has, by the preceding article, the integral of the equation
Ve = Chuyt +  Chueryxa ot " Chu eni i+ X,

by supposing X, = 0, it is easy to conclude this same integral, X, being anything. For
this, I observe that, since, X, being null, one has

Ve=010r... 0 (Ap 4+ A A Y,

one will have, by Article V,

Uy = 910203 . .. ¢xpx7
Yy = 010005 ... 0, p*,
Uy = G16203... 05 p",

22



whence one will conclude, by Article VII,

1 x—1

e =102 0 p"A =¢i¢r...0.('p—p)'p,

1bx=¢1¢2...¢x<2 -,

2 2 2
ity =¢1¢>...0.(’p—p)(>p—"p)*p 2
12 3 1 \3 x—2

and thus in sequence, hence

n—1 _ _ — _
e =""zen=0... 01 ("p—p)("p="p)(" ' p="p)... " pR
similarly

"1 =00 b1 ("p—p)("Pp="p)..."p ,

whence one will conclude, by substituting these values into formula (H) of article VII
and making X, = ¢1¢>... ¢, X, for brevity,

_ 010...0, - x+1>
- - n-p). < L

s n "X,
+('10—(]1)91)(12211!7—(])210)...lp+ 1<1G+Z H)

1

(EETES and one will have

Ifp= 1p, one will make 1p:p—i-dp. LetK =

1 1
_ K X 1 dK K X 1
_ +n—1 X+ x+
Ve =0102...0.p" " {B—i—Dx—pZ = (x+1)+{dp+p(x+n—1)}z = }

0102...x 2 it (264 )
Cp—p)?Cp—>p)... ( Zsz“

B and D being two arbitrary constants.

23



If, moreover, one has p = 2 p, one will make, in this last expression of y,, 2 p=
p+dp, and thus in sequence.

One can therefore integrate generally all the differential equations contained in the
following formula

Y =Coryx_1+ 1C¢x¢x71yx72 4.+ X5

whence it results that, if one designates by 6, any function whatsoever of x, the follow-
ing equation

Bxyx = CGx—l‘nyx—l + 1C9x—2¢x¢x—l)’x—2 +.o X

is generally integrable, since by making 6.y, = #, this equation is of the same form as
the preceding.

XI.

Here is now another kind of linear differential equations, of which the order de-
pends on the variable x; let, for example,

Yr =y 1Yx1 by 2yx 2+ fi 3y 3+ Xy
+ Ay 4Yx—4 +bx_5Yx_5+ fr_6Yx—6
+ay_7Yx—7 +by_gyr_g+...

+azys +bays + fiy1.

It is easy to bring these equations back to the form of equation (B) of problem II,
because one has

Y3 =Gy 4Yx—4+by sy 5+ fr 66+ X3
+ay 77+ b gyr-g+...

+azys +bayr + fiyi-
If one subtracts this last equation from the preceding, one will have
Yr =y 1Y—1 +by2yr2 + (fi-3 + 1)yx-3 +Xe — X3,
an equation contained in equation (B).

XII.

Presently here is a quite extended use of the integral Calculus in the finite differ-
ences, in order to determine directly the general expression of the quantities subject to
a certain law which serves to form them, an expression that until here it seems to me
that one has always sought to draw by way of induction, a method not only indirect,
but which, moreover, must be often at fault.
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In order to make myself better understood, I take the following example:
Let x be the sine of an angle z and u its cosine; one has generally, as one knows,

sinnz = 2usin(n — 1)z —sin(n — 2)z,

whence one draws

sinz = x,

sin2z = x(2u),

sin3z = x(4u> — 1),

sindz = x(8u® — 4u),

sin5z = x(16u* — 12u% + 1),

It is necessary now to determine the general expression of sinnz.

One can arrive by way of induction, by continuing further these expressions and
seeking to discover the law of the different coefficients of the powers of u; but it will
happen, if it is not in this example, at least in an infinity of others, that this law will be
very complicated and very difficult to grasp: it matters consequently to have a general
and sure method in order to find it in all the possible cases.

Let, for this, the differential equation be

Yn =Yn—1 (an” + bn)
+yn-a(tap® + bt ey)

(V) Yx =
+yn73(2anu3 + 2bnu2 + 2Cnu+ 2fn)
o
I suppose that one has
yi = ou+p,

Y2 =0 +yu+Q,
y3 = ouw + i’ +0u+o,

Here is how I conclude the general expression of yj,.
I make
Yo =Aptd" + B G

hence,
Vo1 =Ap " VB "Gyl

Yn—2 = Arz—21fin72 + Bn—2Mn73 + Cn_zu”% +...,

and thus in sequence; if one substitutes these values of y,_1, y,—2,. .. into equation (V),
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one will have

yu =u"(anAp—1 + YanAn—s+ 2 apAn_3+ ...
+u" NanBy 1+ 'anBy 2+ @By 3+ ...
+bpAn 1+ "buAy 2+ 2bAy s+ )
+ u"fz(anCnfl +'a,Cprn+ 2ayCps+ ...
+buBp1+ 'bpByr+ 2byBu_z+...
+ ' Crhn2+ 2 CrAn_z+ S CrAn_a+...)

By comparing this expression of y, with the preceding, one will have the following
equations
An :anAnfl + lanAn72 + 2anAnf3 +...

B, =a,B,_1 + laan—Z + Zaan_3 +...
+byAp1+ lbnAn72 + 2bnAnf3 +..

by means of which one will determine, by the preceding methods, A,, By, ..., and one
will have thus the general expression of y;,.

I suppose that one wishes to have the general expression of sinngz; it is easy to see,
by that which precedes, that it will have this form

sinnz = x(Au"! + Bl +Cd" D+ Dy + . s

therefore
sin(n— 1)z = x(A, 1" 2+ B, " 4+ Cp 1" 0 +..)

sin(n—2)z = x(A,,,gu"_3 + By +Cpot" " + .. ..

If one substitutes these values of sin(n — 1)z and sin(n — 2)z into the equation
sinnz = 2usin(n— 1)z —sin(n — 2)z,
one will have
sinnz = x(ZAn_lu"*l + 2By " 4 2C, "+ = Apot S — By — . )

and, if one compares this expression with the preceding, one will have

An = 2An71,
(A) B, =2B, 1 —A, 2,
C,=2C—1 — By—2,
By means of these equations one will determine A, B,,, Cy, ..., but one must make

here an observation in which it is necessary to pay attention to all the researches which
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depend on the integral Calculus in the finite differences; that which renders its use very
delicate. This observation consists in this that the preceding equations (A) begin to exist
not at all immediately, that is to say when n has one same value in these equations. In
order to demonstrate, I observe that the fundamental equation

sinnz = 2usin(n — 1)z —sin(n — 2)z,

by means of which I have concluded sin2z,sin3z,sin4z, ..., suppose known the first
two sines sin0z and sin 1z; it can therefore begin to take place only when n = 2; hence
also, equations (A) can begin to exist only when n = 2. The first of these equations
begin to exist when n = 2, in which case one has Ay = 2A7; thus, the smallest index
of A,, that is to say the least value that n can have in this expression, is unity; the
second equation can therefore begin to take place only when n = 3, in which case one
has B3 = 2B, — A1; hence, the least index of B, is 2; the third equation can therefore
begin to take place only when n = 4, in which case one has C4 = 2C3 — B»; hence, the
smallest index of C, is 3, and thus in sequence. This put:
If one integrates the first equation, one will have

A, =2"H,

H being arbitrary; now, putting n = 1, A, = 1, whence H = %, one has A, = 2" 1,
hence A,_, = 2"3. If one substitutes this value of A,_» into the second equation and
if next one integrates it; one will have

B, = —2”’3(n—|—H);

since the differential equation in B, commences to exist when n = 3, the arbitrary
constant H must be determined by the value of B,,, when n = 2; now, u not being able
to have a negative exponent in the expression of sinngz, it follows that B, = 0, hence
H = —2; therefore

B,=-2"3n—-2) and B, ,=-2"3(n—4).

If one substitutes this value of B,_, into the third equation, and if next one integrates

it, one will have
2 _
C, -2 <n n —i—H)

2
now, putting n = 3, C, = 0, whence H = 6, one has C,, = 2"’5%, and thus to
infinity. Therefore
sinnz = x |2 Lt T 22n73u1173 + (n—3)(n—4) on=5,n5
1 1.2
(n=4)(n=5)(n=6) »7 47
= 20yt e
123 o

Let next z = angle sinx; one will have, by differentiating,
% B 1
dx  /1—x2
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and I wish to have the general expression of d—;ﬁ, dx being supposed constant. For this,

letu = \/ﬁ; one will have
du X
dx  (1-x2)3
du 22 +1
dx? (1 —xz)% ’
du B 6x> +9x
dxd (1 —x2)3’

It is easy to see, by considering the law of these expressions of du, d’u, ..., that

d"u
dx"

the general expression of has the following form

d"u A"+ Bux" 4 x4 DX O

s

dxt (17x2)"+%
by differentiating this expression, one has

(n+ DAXT 4 (n+3)B, | X" '+ (n+5)C, | X" 3+(n+7)D, | X" +...
By

A"y +nA, +(n—2) +(n—4)C, +...
dxrtl (1—x2)m+3
but one has

dn+] u _ An+1x”+1 +Bn+1x”71 +Cn+1x"73 +Dn+1x”75 +... .
dxt! (1—x2)m+3 ’

antly

by comparing these two expressions of ==,

one will have the following equations:

App1 = (n“!‘ I)Ana
By = <n+3)Bn+”An7
Co1 = (n+5)Cy+ (n—2)By,

All these equations begin to exist immediately and when n = 1; this put, the first gives

A,=123...n
the second gives
n
B,=123...n(n+1)(n+2) {H+Z(n+1)(n+2)(n+3)}’
or
By=123..n(n+1)(n+2) |0+ 1 :
. =1.2.3...n(n n 2(n+1)(n+2) n+2]°
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One will determine the constant Q by this condition that B, is zero when n = 1; one

has therefore Q = % Therefore

1n(n—1)
2 12
The third equation gives, by integrating and adding the appropriate constants,

13n(n—1)(n-2)(n-3)
2.4 1.2.3.4 ’

B,=123...n

C,=123...n

one will find similarly

1.3.5n(n—1)(n=2)(n=3)(n—4)(n—75)

D,=123...
" 3346 123456 ’
and thus in sequence. Hence
d" 1.23...(n—1 —1 2
12300 D) o Loz UE2D) s
dx" (1—x2)""2 2 1.2
13 (n—1)(n—2)(n—=3)(n—4) ,_s
22 1.2.3.4 x
1.3.5 (n— 1)(n—2)(n—3)(n—4)(n—5)(n—6)xn77
2.4.6 1.2.3.4.5.6
1.3.5.7 (n— 1)(n—2)...(n—8)xn79
2.4.6.8 1.2.3...8
e ].

I have supposed, in the two preceding examples, the law of the exponents known,
because it was very easy to perceive; but, if it happened that it was complicated, this
which must be extremely rare, one will be able to determine it by the preceding method.

XIII.

Here is yet a remarkable usage of the integral Calculus in the finite differences in
order to determine the nature of the functions according to some given conditions, this
which is often useful, principally in the Calculus of partial differences.*

One proposes to find a function of x such that by making successively x = ¢ (x) and
x = y(x), one has

(o) F1o()] = Hefly(x)] + Xy,

41 had found this method at the end of 1772, on the occasion of some problems which Mr. Monge,
skillful professor of Mathematics at the schools of the Genoese at Mézieres, proposed to me; I did part of it
for him then; at the same time, I sent it to Mr. de la Grange, and I have presented it to the Academy in the
month of February 1773. Since this time, Mr. the marquis de Condorcet has had printed in the Volume of
the Academy for the year 1771 a quite beautiful Memoir on this object; but the route which I have differs
from his in this that he does not propose, as I do it, to restore the question to the differential equations of
which the difference is constant and equal to unity. Translator’s note: On 10 March and 17 March 1773, as
reported in the Proces-Verbaux of the Paris Academy, Laplace read the paper “Recherches sur I’integration
des differentielles aux différences finies et sur leur application a 1’analyse des hasards.”
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¢ (x), y(x), Hy, being some given functions of x.
For this let

u;=y(x) and w1 =@(x).

From the first of these equations, I conclude
x=T(u;) and ¢(x)=H(u,),
I'(u;) and H (u;) representing some known functions of u,; hence,
uzr1 = H(u),

a differential equation of which the constant difference is equal to unity, and which one
can integrate in many cases.

The integral of this equation will give u, as function of z, and the equation x = I"(u;)
will give x as function of z. Substituting this value of x in H, and X\, the quantities will
become some functions of z, which I designate by L, and Z,. Moreover, one has

Flo@)] = fluzpr) and  fly(x)] = f(uz);

equation (o) will become therefore, by supposing f(u;) =y,

Yer1 =Ly, +Z;,

an equation integrable by Problem I.

One must observe here, consistent with a remark due to Mr. Euler, that the constants
which come by integrating the finite differential equations of which the variable is z,
and of which the constant difference is unity, can be supposed some functions any
whatsoever of sin27z and cos27z, 7 expressing the ratio of the circumference to the
diameter.

Presently, if one puts back into the expression of y, instead of z its value in x, one
will have f[y(x)], and, if one changes y(x) into x, one will have the function of x,
which satisfies the Problem. The following examples clarify this method:

The question is to find a function of x such that by changing successively x into x4
and into mx, one has

f(x7) = f(mx)+p,

m and p being constants.
I make u, = mx, and u, 1 = x7; hence,

uz\4
Uzp1 =\ —) -
m

2
. . . q q
In order to integrate this equation, I make u; = a; therefore u = 75, u3 = -2

m‘12+‘1 g

82
Let u, = % ; therefore
2=
a8z a8z+1

Upp] = —— = ——.
g mqu""q mfz+1
Therefore
8z+1 =48z,
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this which gives
8 =Aq".
Now, putting 7= 27 8;, =4, whence A = 57 one has g = qul. Moreover, one has
fer1 = qf:+q. Therefore f; = Aq* + ﬁ- Now, putting z=2, f; = q; therefore A = qfll
and f; = q%l (¢* — q); therefore
aqz—l
Uy = —

ma-1 (¢°—q) ’

This expression of u, is complete, since a is arbitrary; now the equation

F&x?) = f(mx)+p
will become
Vel =Y+ P-

Therefore
y: =C+pz= f(mx).

It is necessary presently to have the value of z in x; now, since one has u; = mx, one
will have

whence one draws’

or

let %" — Im__ K and one will find

q-1 "

mx
Z_ ll—m%l K
lq lg’

hence
1"
ye=A+p—mil
lq

A being an arbitrary constant which can be any function whatsoever of sin27z and
cos2mz. Let ['(sin27z, cos27z) be this function; by substituting instead of z its value,

one will have

- 1
A=T[sin2z—22" cos2p—m’t
l lg

STranslator’s note: Laplace uses 1 to denote the natural logarithm. It appears as [ in this document.
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Therefore

=" =" ="
y, = f(mx) =T [ sin2n—2"" cos2p—21" | 4 p—m®L.
lq lq lq

thus the function of x demanded is
1l % 1—4 11—
f(x)=T sin2x ”l” ,COS2TT ”l’
q

q—1

q

It is a question again to find f(x) such that

FP = f(2x) +2.

One could first think that it is impossible to satisfy this equation, at least to suppose
f(x) equal to a constant; this is indeed that which some able geometers have believed
(see the second Volume of the Mémoires de Turin, p. 320); but one is going to see there
are an infinity of other ways to satisfy it.

Let

U, =Xx and Uz =2x;

therefore
Uy =2u; and u, = A2* = x.

Moreover, one has

S(2x) = fuz11), which I designate by a1,

and
f(x) :f(uz) =1z

and one will have
2
R

In order to integrate this equation, I suppose t; = a+ %, therefore

t2:a +7, t3:a +7, ey
a a
and generally
t nz—1 + 1
z=4a -
az "’
a complete expression of #,, since « is arbitrary; now one has 2°~! = 54> therefore

X X
t,=a*X +a A, or t,=b"+b"",

b being an arbitrary constant; now this constant can be supposed any function whatso-
ever of sin2mz and cos27z, and since z = H + 1%’ H being any constant whatsoever,
one will have

. Ix Ix
b= f(sin2xm 1—2,(:05277:1—2)7
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hence the function of x demanded is

_ Ix Ix 1" , Ix Ix ]
f(sm277:12,cos277:12)} + {f(s1n27rlz,cos27r12)

It is a question again to find f(x —y\/—1), such that one has
fx+yv—=1)—flx—yv—1)=2M+/—1.
By supposing y = g + hx, one will have

FleV=T+x(1+hV=1)] = flx(1 = hV/=1) —gV/=1] = 2MV/-1.
Let
X(1+hV=1)+ gV =T =uz,
*(1=hy/=T)—gv—T =,

one will have therefore
_ UVl
1—hy/—1"

1+ hy/—1 2¢v/—1
Uzr1 = Uz + )
1—hyv—-1 1-hv—-1

an equation of which the integral is

therefore

(1T g .
uZ_A(l—h\/—il) —z—x(l—hﬁ)—gﬁ,

hence,

1+hy/—1
1—hy/—1
Now, if one names @7 the angle of which the tangent is 4, and 7 the ratio of the
semi-circumference to the radius, one will have

zl l(g+hx)+K.

1+hyv-1
| ———=2v-lom,;
1—hv—-1

therefore l N
_ (g + x) +K.

= 2vV—lorn

Now one has

fluzr) = fuz) =2MV—1;
and, by representing f(u;) by t,,

frp1 =1 +2MV -1,

33



therefore
t,=H+2Mzv—1,

substituting instead of z its value, one will have

I(g+ hx)

=M
on

+1L,
L being an arbitrary constant, which can be any function whatsoever of sin27z and

i letho) I(g-+hv) Heth) | H(g+hx) _
cos 27z, or of sin oU/1 and of cos oy 1’ and consequently of e™ & ; now, e =

g+ hx; therefore L can be a function of (g + hx) & ; hence

(g +hx) 1
—yw-1)=M———=+T hx)—1|.
flx=yv-=1) oz L |(gt+ho
XIV.
On the equations in finite differences, when one has many equations among many
variables.

I suppose that one has the following two equations among the three variables yy, ! Yy
and x
(D Yr +AxYe-1 :Bxl)’x“"cxlyxflv
(2) y;c‘i‘le)’xfl = lel)’x+ 1Cxlyxfl-

The simplest way to integrate them is to reduce them by elimination to two other
equations, the one between y, and x, the other between ! vy and x; for this, I multiply

the first by le, the second by Cy, and I subtract the one from the other; this which
gives
( 1Cx - Cx))’x + ( 1CxAx —Cy le).YX—l = ( 1CxBx —Cy le) IYM

hence

3) { (ICx—l _Cx—l))’x—l + ( 1Cx—le—l —C 1Ax—l>yx—1

== (]folefl *fol le,]) lyx71~

I multiply equation (1) by «, equation(2) by "o, and I add them with equation (3),
this which gives

(Ot-i- la)yx+(an+ 10‘le+ lc —1 _Cx—l)yx—l +(1Cx—1Ax—1 —C—q le—l)yx—Z
= (OCB+ lalB) lyx+(acx+ lalcx+ 1folB)cfl —Ci lefl) 1)’x71;

I make lyx and lyx,l vanish by means of the equations
aBi+ 'a'B, =0,

oCy+ 1a1Cx+ 1folB)rfl —Cyi lefl :07
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and I have in this manner a differential equation between y, and x alone; by an entirely
similar process, one will find one of them between lyx and x; and it would be the same
thing if one has a greater number of equations and of variables.

Itis easy to see that, if there was in each equation some terms such as Ty, X, ..., Ty, Xx
being some functions any whatsoever of x, they would be integrable in the same cases
where they are it, these terms not being there.

When one has n — 1 equations among n variables, these being able to have an infin-
ity of different relations among them, the integration of these equations presents thus a
great number of curious researches; but there is a case which merits a particular atten-
tion, in this that it is encountered sometimes and principally in the analyses of chances;
it is the case in which these equations return to themselves.
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