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Bernoulli's aim is to show that the infinitesimal calculuslivgroduce the same
result as that obtained by combinatorial means when largeets are involved. The
paper is quite easy to understand. His results are for theé paosentirely correct.
However, he has made several computational errors.

The two urn problem

We are given two urns of which the first containswvhite tickets and the second
black tickets. One ticket is drawn at random from the firstamd then placed into the
second. Similarly, after mixing, one ticket is drawn frone thecond urn and placed
into the first. This process, which Bernoulli calls a perntiota is performed a total of
r times. We seek the expected number of white tickets in thieuirsat timer.

Combinatorial solution

Let the expected number of white tickets in the first urn beotleth by w(r) and in
the second byw(r). We have alwaysu(r) + v(r) = n and the initial conditions
w(0) = n, v(0) = 0.

Attime r+ 1, the first urn will lose a white ticket with probability(r) /n and gain
a white ticket with probability(r) /n. Therefore we have

w(r) , o)

n n

w(r+1) =w(r) —

Upon elimination ofv(r), using the conditiom(r) + v(r) = n, we obtain

w(r+1) = w(r) (1—3>+1

n



The solution of this recurrence relation is easy and is

w(r) = g (”;2)T+

Since0 < "T*Q < 1, it follows thatw(r) converges taj asr approaches infinity.

Moreover, sincdim,, (1 — %)” =€, whenn is very great we may approximate
w(r) as

|3

w(r) ~ g (1 + efQT/”)

Infinitesimal solution

If Ar = 1, thenAw = —1 with probability w(r)/n, occurring when a white ticket
is drawn, andAw = 1 with probabilityl — w(r)/n, occurring when a white ticket is
inserted, it having been drawn from the second urn. Thus wevmite

wAr  (n—w)Ar
J’_
n n

Aw = —

If we treatw as a continuous function ef then we may rewrite this as

du — _wdr | (n—w)dr
n n

The resulting differential equation, subject to the initanditionw(0) = n, may be

solved by the separation of variable technique. Namely,

dw dr

Qw—n  n
has solution

n n
w(r) = 5 + 5972’#"

Bernoulli offers one comparison. With = 200 andr = 100, the combinatorial
value ofw(100) = 136.603 or nearly136§. The approximate value af(100) =
136.788 or nearly136§. Bernoulli errors slightly in reporting the value H.%%

The three urn problem

Combinatorial solution

Let there now be three urns. The first containshite tickets, the seconad black and
the thirdn red. A ticket is extracted at random from the first and plaocéalthe second,
likewise a ticket is extracted from the second and placeal iné third, and finally a
ticket is extracted from the third and placed into the firgtisIprocess is continued a
total of r times. The expected number of white tickets in each urn iglsbu

Letw(r), v(r) andu(r) denote the expected number of white tickets in urn 1, urn
2 and urn 3 respectively aftercycles of extractions and insertions.



We have the recurrence relations

w(r—i—l):w(r)—#—i—ug)
v(r—i—l)zv(r)—?—i—#
u(r+1) = u(r) - 40 1)

for whichw(r) +v(r) +u(r) = nfor all r and the initial conditionss(r) = n, v(r)
u(r) =0.

After computing the first few values af, «, andv, Bernoulli observes from the
pattern that the solution appears to be given by the gengratnction

T
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Indeed he claims
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Verification of solution

Certainly,

Now the first recurrence relation

wir) _ ulr) "

w(r+1) =w(r) —

may be rewritten as

w(r+1)=w(r)(”_1>+$

Moreover, we may rewrite)(r) as

wo=() () F Q) F




0= () () ) () () e

Substituting these series into the recurrence relatignn@ have

w(r +1) =w(r) (”_‘1) RG]

(2 ()
GO w00
()05 1

which may be simplified first to

and then to
w(r—f—l):(n_l TH.n
n
AR
3 2 n n?2
A@-OIF) 7
6 5 n nb
This finally is

n—1\"" r+1 n—1\""2% 1 r+1 n—1\"* 1
-n+ c— + N
n 3 n n 6 n n°

which is immediately recognized as the series representingt 1).
The verification of the other two solutions is handled sinfyia

Approximation of solution

We examinau(r) in the case where andr are extremely large. As before

w0 () () O F

4



The following approximations hold

1. Forlargen, (1 — 1) ~ er/m
2. Aslong ask is not too great with respect 19 (}) ~ %7

3. For largen andk small with respect ta, ("T‘l)r_lC ~(1-1)

Hence, we have
3 6

-~ = T T

To find a closed form for the series, we put

3 7‘6

-
S=1+ % + W + -

and note that‘f% = 5 subject to the initial conditions that(0) = 1, 5'(0) =

S”(0) = 0. This gives

1 2 /3
— —ar/n 2 a-r/(2n)
S 3e + 3e cos <—2n )

w(r) = g <1 + 2737/ ¢og <$>>

For the second urn, the initial conditions must$1®) = S”(0) = 0, S’(0) = 1/n.

so that

Infinitesimal method — Construction of the differential equation

Letz, y andz be the number of white tickets in the first, second and thirdraspec-
tively. As usual- denotes the number of cycles of extraction and insertiofrckéts.
Formulas forr andy in terms ofr are to be found.

To this end, we note that

d —z—y)d
xr+(n x —y)dr

de = ———
n n
dr  xdr
n n
so that we may write

d d

dr = naw anddr = Y

n—2xr—y T —y

and further equate the two.



Since, in the limitxz andy will converge tor/3, Bernoulli makes the substitutions
ofx = g +pandy = g — ¢ forwhichdz = dp anddy = —dq. This gives

ndp  ndq
2p—q p+gq

Now Bernoulli needs to put this into a form which is integeabTo this end he puts
q = tp so thatdq = tdp + pdt. This gives

ndp  n(tdp + pdt)
2p—tp  tp+p

or, after separating the variables,

dp  (t—2)dt
p  t—t2—1

We now return talr. Substituting successively far y andg, we have

g = ndy _ —ndq _ —n(tdp + pdt) _-n (t@—dt)
r—y p+gq tp+p 1+t
_ ndt
-2 —1

Sincet = £ whenr = 0, Bernoulli putst = s + 3, then sincelt = ds we have

dp  (t—2)dt (3 —2s)ds

P _t—t2—1_2(82+%)

and
—nds

dr = —.
32—|—%

Finally, Bernoulli writes

dp 3 J sds @

—dr — ——.
D 2n 5243

Solution of the differential equation (2)

Whenr = 0, we haver =n, y =0, p = 2n, ¢ = %, t = § ands = 0. Integrating
the differential equation (2)

dp 3 sds
P 2n s2 + Z
gives
3r 1
1 =———=1 452
n(p) 5 3 (3+4s°)+C



where C is an arbitrary constant. From the initial condiiame obtairC' = In (2—") and

NE
therefore
ne—3r/(2n)

p =
nds

\/s2+ 3

2nacta <28)+C’
_ 2" aretan [ 22
V3 V3

where( is an arbitrary constant. The initial conditions dictatatii = 0, hence

r= —2—\/% arctan (%) 4)

A bit of algebra applied to (4) permits us to write

e

(3)

Likewise, since
dr = —

we have

1 B sec

4 2 2n

Substituting this expression into the formula fgrequation (3), then gives

n

2 3
p= 56_3”(2") cos <7‘2i> =z — g (5)
Similarly, sincet = s + % and since equation 4 can be used to expseésderms

of r, we may write
V3 <r\/§>

1
b=g -5t gy

and further sincg = 3 — ¢ = 3 — tp, we have

e 37/(27) ¢og <@> X [1 —/3tan <£>] (6)
2n 2n

The number of white tickets in the third urn will be=n — x — y.

n
3

Bernoulli's numerical computations

We know thatz, y and z will converge ton/3 asr — oo, but the presence of the
trigonometric functions shows that the decrease in the murabwhite tickets in the
first urn is not uniform but rather has a damped oscillatoygpa. This leads to the
question of when, for example, the first urn will hold prebtise/3 tickets. Inspection



of equation (5) shows that this occurs when the cosine vasjsthat is, where its
argument is an odd multiple af/2.

If n = 3000, z is reduced tal000 whenr = 5441. Substitution of this value of
r into equation (6) yieldgy = 1114. Of course,z = 886. Tripling the number of
permutations ter = 16332 givesz = 1000, y = 1000, z = 1000.

Note that due to symmetry, the number of black tickets in #wed urn and the
number of red tickets in the third urn must each be reduce@®0 When = 1551. In
fact,

Number of colored tickets remaining
r = 1551 White Black Red
Urn1l 1000 886 1114
Urn 2 1114 1000 886
Urn 3 886 1114 1000

The number of white tickets in the first urn, for example, voi# an extremum
when the number of white tickets in that urn equals the nurobéckets in the third,
that is, whemx = z, for then the probability of a white ticket exiting must egttee
probability of a white ticket entering. This occurs for thesfitime whenr = 7255.
Herex = 973, y = 1053, z = 973.

For the second urn, the extrema occur where y. This occurs for the first time
whenr = 3628. We haver = 1163, y = 1163, z = 674.

For the third urn, the extrema occur where= z. This occurs for the first time
whenr = 10883. We haver = 991, y = 1004, z = 1004.

Because the damping is exponential, the deviations fronfirtigng distribution
quickly become negligible. We end with a plot of the numbewaifte tickets in each
of the three urns when = 3000.

Since the distribution of each color behaves in the same eraitris clear that by
r = 10000, for all practical purposes the system has reached a stedelys
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