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Bernoulli’s aim is to show that the infinitesimal calculus will produce the same
result as that obtained by combinatorial means when large numbers are involved. The
paper is quite easy to understand. His results are for the most part entirely correct.
However, he has made several computational errors.

The two urn problem

We are given two urns of which the first containsn white tickets and the secondn
black tickets. One ticket is drawn at random from the first urnand then placed into the
second. Similarly, after mixing, one ticket is drawn from the second urn and placed
into the first. This process, which Bernoulli calls a permutation, is performed a total of
r times. We seek the expected number of white tickets in the first urn at timer.

Combinatorial solution

Let the expected number of white tickets in the first urn be denoted byw(r) and in
the second byv(r). We have alwaysw(r) + v(r) = n and the initial conditions
w(0) = n, v(0) = 0.

At time r+1, the first urn will lose a white ticket with probabilityw(r)/n and gain
a white ticket with probabilityv(r)/n. Therefore we have

w(r + 1) = w(r) −
w(r)

n
+

v(r)

n

Upon elimination ofv(r), using the conditionw(r) + v(r) = n, we obtain

w(r + 1) = w(r)

(

1−
2

n

)

+ 1
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The solution of this recurrence relation is easy and is

w(r) =
n

2

(

n− 2

n

)r

+
n

2

Since0 < n−2
n < 1, it follows thatw(r) converges ton2 asr approaches infinity.

Moreover, sincelimn→∞
(

1− x
n

)n
=ex, whenn is very great we may approximate

w(r) as

w(r) ≈
n

2

(

1 + e−2r/n
)

Infinitesimal solution

If ∆r = 1, then∆w = −1 with probabilityw(r)/n, occurring when a white ticket
is drawn, and∆w = 1 with probability1 − w(r)/n, occurring when a white ticket is
inserted, it having been drawn from the second urn. Thus we may write

∆w = −
w∆r

n
+

(n− w)∆r

n

If we treatw as a continuous function ofr, then we may rewrite this as

dw = −
wdr

n
+

(n− w)dr

n

The resulting differential equation, subject to the initial conditionw(0) = n, may be
solved by the separation of variable technique. Namely,

dw

2w − n
= −

dr

n

has solution
w(r) =

n

2
+

n

2
e−2r/n

Bernoulli offers one comparison. Withn = 200 andr = 100, the combinatorial
value ofw(100) = 136.603 or nearly136 3

5 . The approximate value ofw(100) =
136.788 or nearly136 4

5 . Bernoulli errors slightly in reporting the value as136 2
3 .

The three urn problem

Combinatorial solution

Let there now be three urns. The first containsn white tickets, the secondn black and
the thirdn red. A ticket is extracted at random from the first and placed into the second,
likewise a ticket is extracted from the second and placed into the third, and finally a
ticket is extracted from the third and placed into the first. This process is continued a
total ofr times. The expected number of white tickets in each urn is sought.

Let w(r), v(r) andu(r) denote the expected number of white tickets in urn 1, urn
2 and urn 3 respectively afterr cycles of extractions and insertions.
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We have the recurrence relations

w(r + 1) = w(r) −
w(r)

n
+

u(r)

n

v(r + 1) = v(r) −
v(r)

n
+

w(r)

n

u(r + 1) = u(r)−
u(r)

n
+

v(r)

n

for whichw(r)+v(r)+u(r) = n for all r and the initial conditionsw(r) = n, v(r) =
u(r) = 0.

After computing the first few values ofw, u, andv, Bernoulli observes from the
pattern that the solution appears to be given by the generating function

nr = ((n− 1) + 1)r =

r
∑

k=0

(

r

k

)

(n− 1)r−k

Indeed he claims

w(r) · nr−1 =

(

r

0

)

(n− 1)r−0 +

(

r

3

)

(n− 1)r−3 +

(

r

6

)

(n− 1)r−6 + · · ·

v(r) · nr−1 =

(

r

1

)

(n− 1)r−1 +

(

r

4

)

(n− 1)r−4 +

(

r

7

)

(n− 1)r−7 + · · ·

w(r) · nr−1 =

(

r

2

)

(n− 1)r−2 +

(

r

5

)

(n− 1)r−5 +

(

r

8

)

(n− 1)r−8 + · · ·

Verification of solution

Certainly,

w(1) · n0 =

(

1

0

)

(n− 1)1 +

(

1

3

)

(n− 3)−2 + · · · = n− 1,

v(1) · n0 =

(

1

1

)

(n− 1)0 +

(

1

4

)

(n− 3)−3 + · · · = 1

u(1) · n0 =

(

1

2

)

(n− 1)−2 +

(

1

5

)

(n− 1)−4 + · · · = 0

Now the first recurrence relation

w(r + 1) = w(r) −
w(r)

n
+

u(r)

n
(1)

may be rewritten as

w(r + 1) = w(r)

(

n− 1

n

)

+
u(r)

n

Moreover, we may rewritew(r) as

w(r) =

(

n− 1

n

)r

· n+

(

r

3

)(

n− 1

n

)r−3

·
1

n2
+

(

r

6

)(

n− 1

n

)r−6

·
1

n5
+ · · ·
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andu(r) as

u(r) =

(

r

2

)(

n− 1

n

)r−2

·
1

n
+

(

r

5

)(

n− 1

n

)r−5

·
1

n4
+

(

r

8

)(

n− 1

n

)r−8

·
1

n7
+· · ·

Substituting these series into the recurrence relation (1), we have

w(r + 1) =w(r)

(

n− 1

n

)

+
u(r)

n

=

(

n− 1

n

)r

· n ·

(

n− 1

n

)

+

(

r

3

)(

n− 1

n

)r−3

·
1

n2
·

(

n− 1

n

)

+

(

r

6

)(

n− 1

n

)r−6

·
1

n5
·

(

n− 1

n

)

+ · · ·

+

(

r

2

)(

n− 1

n

)r−2

·
1

n
·
1

n
+

(

r

5

)(

n− 1

n

)r−4

·
1

n4
·
1

n
+ · · ·

which may be simplified first to

w(r + 1) =

(

n− 1

n

)r+1

· n

+

(

r

3

)(

n− 1

n

)r−2

·
1

n2
+

(

r

6

)(

n− 1

n

)r−5

·
1

n5
+ · · ·

+

(

r

2

)(

n− 1

n

)r−2

·
1

n2
+

(

r

5

)(

n− 1

n

)r−4

·
1

n5
+ · · ·

and then to

w(r + 1) =

(

n− 1

n

)r+1

· n

+

[(

r

3

)

+

(

r

2

)](

n− 1

n

)r−2

·
1

n2
+ · · ·

+

[(

r

6

)

+

(

r

5

)](

n− 1

n

)r−4

·
1

n5
+ · · ·

This finally is
(

n− 1

n

)r+1

· n+

(

r + 1

3

)(

n− 1

n

)r−2

·
1

n2
+

(

r + 1

6

)(

n− 1

n

)r−4

·
1

n5
+ · · ·

which is immediately recognized as the series representingw(r + 1).
The verification of the other two solutions is handled similarly.

Approximation of solution

We examinew(r) in the case wheren andr are extremely large. As before

w(r) =

(

n− 1

n

)r

· n+

(

r

3

)(

n− 1

n

)r−3

·
1

n2
+

(

r

6

)(

n− 1

n

)r−6

·
1

n5
+ · · ·
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The following approximations hold

1. For largen,
(

1− 1
n

)r
≈ e−r/n

2. As long ask is not too great with respect tor,
(

r
k

)

≈ rk

k!

3. For largen andk small with respect ton,
(

n−1
n

)r−k
≈
(

1− 1
n

)r

Hence, we have

w(r) ≈ n · e
−r

n

(

1 +
r3

3!n3
+

r6

6!n6
+ · · ·

)

To find a closed form for the series, we put

S = 1 +
r3

3!n3
+

r6

6!n6
+ · · ·

and note thatd
3S
dr3 = S

n3 subject to the initial conditions thatS(0) = 1, S′(0) =
S′′(0) = 0. This gives

S =
1

3
er/n +

2

3
e−r/(2n) cos

(

r
√
3

2n

)

so that

w(r) =
n

3

(

1 + 2e−3r/(2n) cos

(

r
√
3

2n

))

For the second urn, the initial conditions must beS(0) = S′′(0) = 0, S′(0) = 1/n.

Infinitesimal method – Construction of the differential equation

Let x, y andz be the number of white tickets in the first, second and third urn respec-
tively. As usualr denotes the number of cycles of extraction and insertion of tickets.
Formulas forx andy in terms ofr are to be found.

To this end, we note that

dx = −
xdr

n
+

(n− x− y)dr

n

dy = −
ydr

n
+

xdr

n

so that we may write

dr =
ndx

n− 2x− y
anddr =

ndy

x− y

and further equate the two.
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Since, in the limit,x andy will converge ton/3, Bernoulli makes the substitutions
of x = n

3 + p andy = n
3 − q for whichdx = dp anddy = −dq. This gives

ndp

2p− q
=

ndq

p+ q

Now Bernoulli needs to put this into a form which is integrable. To this end he puts
q = tp so thatdq = tdp+ pdt. This gives

ndp

2p− tp
=

n(tdp+ pdt)

tp+ p

or, after separating the variables,

dp

p
=

(t− 2)dt

t− t2 − 1

We now return todr. Substituting successively forx, y andq, we have

dr =
ndy

x− y
=

−ndq

p+ q
=

−n(tdp+ pdt)

tp+ p
=

−n

1 + t

(

t
dp

p
− dt

)

=
ndt

t− t2 − 1

Sincet = 1
2 whenr = 0, Bernoulli putst = s+ 1

2 , then sincedt = ds we have

dp

p
=

(t− 2)dt

t− t2 − 1
=

(3− 2s)ds

2
(

s2 + 3
4

)

and

dr =
−nds

s2 + 3
4

.

Finally, Bernoulli writes

dp

p
= −

3

2n
dr −

sds

s2 + 3
4

. (2)

Solution of the differential equation (2)

Whenr = 0, we havex = n, y = 0, p = 2
3n, q = n

3 , t =
1
2 ands = 0. Integrating

the differential equation (2)

dp

p
= −

3

2n
dr −

sds

s2 + 3
4

.

gives

ln(p) = −
3r

2n
−

1

2
ln(3 + 4s2) + C
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where C is an arbitrary constant. From the initial conditions we obtainC = ln
(

2n√
3

)

and

therefore

p =
ne−3r/(2n)

√
3
√

s2 + 3
4

(3)

Likewise, since

dr = −
nds

√

s2 + 3
4

we have

r = −
2n
√
3
arctan

(

2s
√
3

)

+ C

whereC is an arbitrary constant. The initial conditions dictate thatC = 0, hence

r = −
2n
√
3
arctan

(

2s
√
3

)

(4)

A bit of algebra applied to (4) permits us to write

√

s2 +
3

4
=

√
3

2
sec

(

r
√
3

2n

)

Substituting this expression into the formula forp, equation (3), then gives

p =
2

3
e−3r/(2n) cos

(

r
√
3

2n

)

= x−
n

3
(5)

Similarly, sincet = s + 1
2 , and since equation 4 can be used to expresss in terms

of r, we may write

t =
1

2
−

√
3

2
tan

(

r
√
3

2n

)

and further sincey = n
3 − q = n

3 − tp, we have

y =
n

3
−

n

3
e−3r/(2n) cos

(

r
√
3

2n

)

×

[

1−
√
3 tan

(

r
√
3

2n

)]

(6)

The number of white tickets in the third urn will bez = n− x− y.

Bernoulli’s numerical computations

We know thatx, y andz will converge ton/3 asr → ∞, but the presence of the
trigonometric functions shows that the decrease in the number of white tickets in the
first urn is not uniform but rather has a damped oscillatory pattern. This leads to the
question of when, for example, the first urn will hold precisely n/3 tickets. Inspection
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of equation (5) shows that this occurs when the cosine vanishes, that is, where its
argument is an odd multiple ofπ/2.

If n = 3000, x is reduced to1000 whenr = 5441. Substitution of this value of
r into equation (6) yieldsy = 1114. Of course,z = 886. Tripling the number of
permutations tor = 16332 givesx = 1000, y = 1000, z = 1000.

Note that due to symmetry, the number of black tickets in the second urn and the
number of red tickets in the third urn must each be reduced to 1000 whenr = 1551. In
fact,

Number of colored tickets remaining
r = 1551 White Black Red

Urn 1 1000 886 1114
Urn 2 1114 1000 886
Urn 3 886 1114 1000

The number of white tickets in the first urn, for example, willbe an extremum
when the number of white tickets in that urn equals the numberof tickets in the third,
that is, whenx = z, for then the probability of a white ticket exiting must equal the
probability of a white ticket entering. This occurs for the first time whenr = 7255.
Herex = 973, y = 1053, z = 973.

For the second urn, the extrema occur wherex = y. This occurs for the first time
whenr = 3628. We havex = 1163, y = 1163, z = 674.

For the third urn, the extrema occur wherey = z. This occurs for the first time
whenr = 10883. We havex = 991, y = 1004, z = 1004.

Because the damping is exponential, the deviations from thelimiting distribution
quickly become negligible. We end with a plot of the number ofwhite tickets in each
of the three urns whenn = 3000.

Since the distribution of each color behaves in the same manner, it is clear that by
r = 10000, for all practical purposes the system has reached a steadystate.
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