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In the month of October of the last year, I have had the honor to present to the
Academy of Sciences one of the results of my researches on interpolation: it was a
formula which represents approximately a sought function, according to many of its
particular values, and of which the coefficients are determined by the conditions of
the Method of least squares. That formula, as one sees by my writing inserted into
the Bulletin de l’Académie (T. XIII, No. 13) under the title of Note sur une formule
d’Analyse, is obtained by aid of the development of a certain function by continued
fraction. Postponing that which touches on the consequences of this formula relative to
interpolation to the end of my researches on this subject, I am going to consider it here
in its relations with continued fractions, as expressing a particular property of these
fractions.

I will commence with the deduction of the formula that I have presented without
demonstration in the writing cited just now. Next I will show that which one is able to
draw relative to the properties of the convergent fractions that one obtains by develop-
ing certain functions into continued fractions.

§1.

We commence our researches with the solution of the following question:
One knows some values of the function F (x) for n + 1 values of the variable,

x = x0, x1, x2,. . .xn, and one supposes that the function is able to be represented by
the formula

a+ bx+ cx2 + . . .+ gxm−1 + hxm,

the exponent m not surpass n. The concern is to find the coefficients of the formula
by subjecting them to permit errors of the values F (x0), F (x1), F (x2),. . .F (xn), only
the least possible influence on any value of F (X).

∗Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier Univer-
sity, Cincinnati, OH. November 7, 2011
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One obtains immediately this sequence of equations

F (x0) = a+ bx0 + cx20 + . . .+ gxm−10 + hxm0 ;

F (x1) = a+ bx1 + cx21 + . . .+ gxm−11 + hxm1 ;

F (x2) = a+ bx2 + cx22 + . . .+ gxm−12 + hxm2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F (xn) = a+ bxn + cx2n + . . .+ gxm−1n + hxmn ;

In order to express the value of F (X), by aid of these equations, we multiply them
by some indeterminate factors λ0, λ1, λ2,. . .λn, and we take the sum of them

λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn)

= a(λ0 + λ1 + λ2 + . . .+ λn)

+ b(λ0x0 + λ1x1 + λ2x2 + . . .+ λnxn)

+ c(λ0x
2
0 + λ1x

2
1 + λ2x

2
2 + . . .+ λnx

2
n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ g(λ0x
m−1
0 + λ1x

m−1
1 + λ2x

m−1
2 + . . .+ λnx

m−1
n )

+ h(λ0x
m
0 + λ1x

m
1 + λ2x

m
2 + . . .+ λnx

m
n ).

If, now, we compare this sum to the expression of F (X), which must be

F (X) = a+ bX + cX2 + . . .+ gXm−1 + hXm,

we will find that in order to assure the relation

F (X) = λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn),

it suffices that the factors λ0, λ1, λ2,. . .λn satisfy the equations

(1)



λ0 +λ1 +λ2 + . . .+λn = 1,

λ0x0 +λ1x1 +λ2x2 + . . .+λnxn = X,

λ0x
2
0 +λ1x

2
1 +λ2x

2
2 + . . .+λnx

2
n = X2,

. . .

. . .

λ0x
m−1
0 +λ1x

m−1
1 +λ2x

m−1
2 + . . .+λnx

m−1
n = Xm−1

λ0x
m
0 +λ1x

m
1 +λ2x

m
2 + . . .+λnx

m
n = Xm,

When m = n, these equations determine completely the factors λ0, λ1, λ2,. . .λn,
since the number of the ones and of the others is the same. In this case the system
of factors thus calculated is the only one which is able to form the coefficients of the
general expression

F (X) = λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn).

2



If, on the contrary, m < n, these equations will be able to be satisfied in an infinity
of ways, and each system of values assigned to the factors λ0, λ1, λ2,. . .λn, in the
formula

F (X) = λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn).

will furnish a particular expression of F (X). But, according to the last condition of the
problem, it is necessary to choose, among all the expressions of F (X), that in which
the errors of the values F (x0), F (x1), F (x2),. . .F (xn) have the minimum influence
on the sought magnitude F (X). Now one knows, by the theory of probabilities, that
one will arrive to this end, by subjecting the factors λ0, λ1, λ2,. . .λn of F (X) to reduce
to the minimum the sum

k20λ
2
0 + k21λ

2
1 + k22λ

2
2 + . . .+ k2nλ

2
n,

in which k20 , k21 , k22 ,. . .k2n designate some quantities proportional to the means of the
squares of the errors of the values F (x0), F (x1), F (x2),. . .F (xn). One sees that, for
more generality, we suppose different from one another the laws of errors of these n+1
quantities. If the law of probability is the same for all, one has in this case

k0 = k1 = k2 = . . . = kn,

and one is able to reduce these multipliers to unity.
The solution of the question is found restored by that which precedes to express

F (X) by the formula

F (X) = λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn),

by determining the factors λ by the equations (1) and by the condition of the minimum
of the sum

k20λ
2
0 + k21λ

2
1 + k22λ

2
2 + . . .+ k2nλ

2
n.

We note, in passing, that this condition is able to be extended to the case itself, in
which m = n. For the factors λ are then completely determined by the equations (1),
and the condition of the minimum of the sum of squares requires nothing more; that
which accords with that which has already been said on this particular case.

Arriving to the calculation of the factors λ0, λ1, λ2,. . .λn, we suppose that θ(x) is
an entire function of x, which for the values x0, x1, x2,. . .xn of x, takes respectively
the values 1

k0
, 1
k1

, 1
k2

,. . . 1
kn

. The sum

k20λ
2
0 + k21λ

2
1 + k22λ

2
2 + . . .+ k2nλ

2
n.

will be written under the form

λ20
θ2(x0)

+
λ21

θ2(x1)
+

λ22
θ2(x2)

+ . . .+
λ2n

θ2(xn)
.

In order to determine, by the condition of minimum of that sum, the quantities λ0,
λ1, λ2,. . .λn, linked among them by the equations (1), we take the differential of them,
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and, according to the ordinary process of the minima and maxima, we will equate it to
the sum of the differentials of the equations (1), each multiplied by some arbitraries µ0,
µ1, µ2,. . .µm respectively. Equating next the terms which will have for factors dλ0,
dλ1, dλ2,. . .dλn, we find the (n+ 1) equations.

(2)



2λ0

θ2(x0)
= µ0+µ1x0+µ2x

2
0+ . . .+µmx

m
0 ;

2λ1

θ2(x1)
= µ0+µ1x1+µ2x

2
1+ . . .+µmx

m
1 ;

. . .

. . .
2λn
θ2(xn)

= µn+µ1xn+µ2x
2
n+ . . .+µmx

m
n .

Reunited to the equations (1), equations (2) determine completely the n + 1 un-
knowns

λ0, λ1, λ2, . . . λn,

and the m+ 1 arbitraries
µ0, µ1, µ2, . . . µn.

Thus all the difficulty is restored to the solution of these equations. Here is the
particular process that we will employ in order to arrive there.

§2.

By putting

φ(x) =
µ0 + µ1x+ µ2x

2 + . . .+ µmx
m

2
,

we transform the equations (2) into these here:

λ0
θ2(x0)

= φ(x0),
λ1

θ2(x1)
= φ(x1), . . .

λn
θ2(xn)

= φ(xn);

and we draw from them

(3) λ0 = θ2(x0)φ(x0), λ1 = θ2(x1)φ(x1), . . . λn = θ2(xn)φ(xn).

Transporting these values into the equations (1), they take the form

θ2(x0)φ(x0) + θ2(x1)φ(x1) + . . .+ θ2(xn)φ(xn) = 1;

θ2(x0)φ(x0)x0 + θ2(x1)φ(x1)x1 + . . .+ θ2(xn)φ(xn)xn = X;

θ2(x0)φ(x0)x20 + θ2(x1)φ(x1)x1x
2 + . . .+ θ2(xn)φ(xn)x2n = X2;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ2(x0)φ(x0)xm−10 + θ2(x1)φ(x1)x1x
m−1 + . . .+ θ2(xn)φ(xn)xm−1n = Xm−1;

θ2(x0)φ(x0)xm0 + θ2(x1)φ(x1)x1x
m + . . .+ θ2(xn)φ(xn)xmn = Xm.
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It is not difficult to note, under this form, that the first members are the coefficients
of 1

x , 1
x2 , 1

x3 ,. . . 1
xm , 1

xm+1 , in the series one obtains by developing, according to the
decreasing powers of x, the function

θ2(x0)φ(x0)

x− x0
+
θ2(x1)φ(x1)

x− x1
+ . . .+

θ2(xn)φ(xn)

x− xn
.

The second members are likewise the coefficients of the development of

1

x−X
.

Consequently these equations are able to be replaced by the condition imposed on the
difference of the two functions

θ2(x0)φ(x0)

x− x0
+
θ2(x1)φ(x1)

x− x1
+ . . .+

θ2(xn)φ(xn)

x− xn
and

1

x−X
,

by not being contained at all in its development according to the descending powers of
x the terms in 1

x , 1
x2 , 1

x3 ,. . . 1
xm , 1

xm+1 . If therefore one sets this difference under the
form of a function M

N , the degree of the denominator N will surpass the degree of the
numerator at least by m+ 2. The preceding equations will be reduced therefore to

θ2(x0)φ(x0)

x− x0
+
θ2(x1)φ(x1)

x− x1
+ . . .+

θ2(xn)φ(xn)

x− xn
− 1

x−X
=
M

N
.

On the other hand by setting, for brevity,

(x− x0)(x− x1)(x− x2) . . . (x− xn) = f(x),

and designating by U the entire function, contained in the fraction θ2(x)φ(x)f ′(x)
f(x) , one

knows, by the theory of the decomposition of rational fractions into simple fractions,
that

θ2(x)φ(x)f ′(x)

f(x)
= U +

θ2(x0)φ(x0)

x− x0
+
θ2(x1)φ(x1)

x− x1
+ . . .+

θ2(xn)φ(xn)

x− xn
.

The equation formed just now will take therefore the form

θ2(x)φ(x)f ′(x)

f(x)
− U − 1

x−X
=
M

N
,

or else, the equivalent

(x−X)f ′(x)θ2(x)

f(x)
− U(x−X) + 1

φ(x)
=

(x−X)M

φ(x)N
.

By being supported on this relation, it is not difficult to find the expression of the
function φ(x).
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We note, in fact, that the fraction (x−X)M
φ(x)N is of a degree inferior to the degree of

1
φ2(x) . For φ(x) represents the quantity

µ0 + µ1x+ µ2x
2 + . . .+ µmx

m

2
,

and, hence, not able to be of a degree superior to m. At the same time the degree of N
surpasses at least by (m+ 2) the degree of M ; thus the fraction (x−X)M

N is of a degree
inferior to the one of 1

φ(x) .

Thence we conclude that in the relation above the fraction U(x−X)+1
φ(x) reproduces

exactly the function (x−X)f ′(x)θ2(x)
f(x) at least to the term of degree 1

φ2(x) inclusively,
that is to the term of which the degree will be the one of unity divided by the square
of its denominator. But, one knows, this degree of exactitude belongs exclusively to
the convergent fractions obtained by the reduction of (x−X)f ′(x)θ2(x)

f(x) into continued
fraction. Besides, in the sequence of these convergent fractions that which will follow
U(x−X)+1

φ(x) will have necessarily a denominator of a degree superior to m. For, without
that, the difference

(x−X)f ′(x)θ2(x)

f(x)
− U(x−X) + 1

φ(x)

will not be of a degree inferior to 1
φ(x)xm , as our relation supposes it

(x−X)f ′(x)θ2(x)

f(x)
− U(x−X) + 1

φ(x)
=

(x−X)M

N
,

where, one has seen, the fraction (x−X)M
N is not able to be of a degree superior to

(−m− 1).
Thus, the fraction U(x−X)+1

φ(x) will be found in the number of convergent fractions of

which one will form the sequence by the development of (x−X)f ′(x)θ2(x)
f(x) by continued

fraction; and in this sequence the convergent fraction, which will come immediately
after, will have a denominator of degree superior to m; so that the fraction U(x−X)+1

φ(x) ,
of which the denominator is of a degree which does not exceed m, is necessarily the
last convergent fraction with denominator of a degree which does not exceed m, in
the sequence of convergent fractions resulting from the development of the expression
(x−X)f ′(x)θ2(x)

f(x) , into continued fraction.

Seeking therefore this convergent fraction, if we represent it by φ0(x)
φ0(x)

, we will have
the equation

U(x−X) + 1

φ(x)
=
φ0(x)

φ0(x)
;

whence

U(x−X) + 1 =
φ0(x)φ(x)

φ0(x)
.
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This equation supposes that the product φ0(x)φ0(x) is divisible by φ0(x); and as
the properties of the convergent fractions require that φ0(x) and φ0(x) are first among
them, φ0(x) could not divide the product without dividing φ(x). Representing by q the
quotient of this division, we will have

φ(x) = qφ0(x),

and this value, being in the equation which precedes, gives

U(x−X) + 1 = qφ0(x).

In order to draw thence an expression of φ(x), we will note that φ(x) is not able to
be of a degree superior to m. If therefore the factor φ0(x) is of degree m, the factor
q is reduced to a constant. It is easy to calculate it, for by putting x = X , in the last
equation, there results from it

1 = qφ0(X) and q =
1

φ0(X)
,

next finally,

φ(x) =
φ0(x)

φ0(X)
.

Such is the value of the function φ(x), when φ0(x) is of degree m precisely. In
each other case, the degree of φ0(x), being less than m, the factor q of the expression

φ(x) = qφ0(x),

is able to receive for value any entire function of x, provided that the degree of the
product qφ0(x) not surpass m. Thus, in this case, there will be an infinity of values of
the sought function φ(x). But if one agrees to take among these values that of which
the degree is least elevated, one will be anew obliged to take for q a constant, and one
will find, as previously, for φ(x) the value

φ(x) =
φ0(x)

φ0(X)
.

According to the equations (3), the function thus determined gives

λ0 = θ2(x0)φ(x0), λ1 = θ2(x1)φ(x1), . . . λn = θ2(xn)φ(xn),

and these values are the coefficients of the formula

F (X) = λ0F (x0) + λ1F (x1) + λ2F (x2) + . . .+ λnF (xn),

by whichF (X) is expressed by means of the particular valuesF (x0), F (x1), F (x2),. . .F (xn).
Therefore one will have finally for F (X) the expression

F (X) =
θ2(x0)φ0(x0)

φ0(x0)
F (x0)+

θ2(x1)φ0(x1)

φ0(x1)
F (x1)+. . .+

θ2(xn)φ0(xn)

φ0(xn)
F (xn)F (xn).
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As for the quantities φ0(x), φ0(x), one has seen that it suffices, in order to deter-
mine them, to reduce to continued fraction the function

(x−X)f ′(x)θ2(x)

f(x)

and to take, in the sequence of convergent fractions, the last of those of which the
degree of the denominator does not surpass m. The numerator of this last fraction is
φ0(x) and the denominator φ0(x).

The question that we ourselves have proposed at the commencement of the first
paragraph is thus resolved.

§3.

In examining the formula that we just found, we are not able to lack convincing us
that it must present important simplifications. Effectively, according to the nature of
the question, the sought function F (X) must be represented by an entire function of
X , while the formula found by us contains the denominator φ0(X) and offers a com-
positions such, that one not perceive how X will vanish from this denominator. This
results from that which the functions φ0(x), φ0(x) determined by the development of
the expression (x−X)f ′(x)θ2(x)

f(x) as continued fraction, contains X in their coefficients.
Finally to bring forth our value of F (X) in a from which permits to see clearly the

composition of it, we are going to show in what manner one passes from the conver-
gent fractions of the expression f ′(x)θ2(x)

f(x) to the convergent fractions of the product
(x−X)f ′(x)θ2(x)

f(x) , and hence, to the fraction φ0(x)
φ0(x)

.
For more simplicity, we admit that the continued fraction

q0 +
1

q1 +
1

q2 + · · ·

resulting from the development of f
′(x)θ2(x)
f(x) contains only the denominators q1, q2,. . . of

the first degree in x; and that, hence, the convergent fractions

q0
1
,

a0q1 + 1

q1
,

q0q1q2 + q2 + q0
q1q2 + 1

,

have for denominators functions of the degrees 0, 1, 2, . . . We will represent these
convergent fractions respectively by

π0(x)

ψ0(x)
,

π1(x)

ψ1(x)
,

π2(x)

ψ2(x)
, . . .

It is advisable to remark still that in the function f ′(x)θ2(x)
f(x) the degree of the nu-

merator is able to be less, but by one unit only, than the degree of the denominator; that
which excluded certain special cases, depending on particular conditions among the
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coefficients of the functions θ(x) and f(x) and giving to the development in contin-
ued fraction a form such that many of the denominators q1, q2,. . . could be of second,
of third degree, or of superior degrees. Moreover, it is easy to be convinced that this
exception could not exist in the fraction

q0 +
1

q1 +
1

q2 + · · ·

for none of the cases of ordinary interpolation, where x0, x1, x2, . . .xn, roots of the
equation f(x) = 0, have some real values completely different from one another, and
where the function θ(x), containing no imaginary coefficient, takes for x = x0, x1,
x2,. . .xn the finite values 1

k0
, 1
k1

, 1
k2

,. . . 1
kn

. Under this hypothesis, one has effectively,
by being served with the notation1 of Mr. Cauchy (Journal de l’École Polytechnique
25th Cahier),

ε+∞−∞
((

f ′(x)θ2(x)

f(x)

))
= n+ 1;

and, according to the process which serves to determine the value of ε+∞−∞
((

f ′(x)θ2(x)
f(x)

))
,

it is clear that for f(x) of degree (n+ 1) it remains always inferior to (n+ 1), if in the
fraction

q0 +
1

q1 +
1

q2 + · · ·

resulting from the development of f ′(x)θ2(x)
f(x) , any one of the denominators q1, q2,

q3,. . . is of a degree superior to the first.
Convinced by these considerations that the limitations that we have brought to the

form of the continued fraction deduced from the function f ′(x)θ2(x)
f(x) , has no particular

importance at all, we are able to approach at present the determination of φ
0(x)
φ0(x)

, that is
of the last of the convergent fractions furnished by the development of the expression
(x−X) f

′(x)θ2(x)
f(x) , of which the denominators have no degree higher than m. We will

demonstrate that this fraction is expressed by the formula

ψm(X)πm+1(x)− ψm+1(X)πm(x)
1

x−X [ψm(X)ψm+1(x)− ψm(x)ψm+1(X)]

in which πm(x)
ψm(x) , πm+1(x)

ψm+1(x)
designate the convergent fractions of the expression f ′(x)θ2(x)

f(x) ,
of which the denominators are of the degrees m and m+ 1.

In fact, the composition of this formula shows with evidence that its denominator is
reduced to an entire function of a degree which does not surpass m. On the other hand,
if we take the difference between this same formula and the expression (x−X)f ′(x)θ2(x)

f(x) ,

1The notation cannot be reproduced exactly. Cauchy indicates by it the contour integral.
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we find[
f ′(x)θ2(x)

f(x) − πm+1(x)
ψm+1(x)

]
ψm(X)ψm+1(x)−

[
f ′(x)θ2(x)

f(x) − πm(x)
ψm(x)

]
ψm+1(X)ψm(x)

1
x−X [ψm(X)ψm+1(x)− ψm(x)ψm+1(X)]

and this difference is not able to be of a degree superior to the one of

1
1

x−X [ψm(X)ψm+1(x)− ψm(x)ψm+1(X)]
· 1

xm
.

For, according to the properties of the convergent fractions, the two terms(
f ′(x)θ2(x)

f(x)
− πm+1(x)

ψm+1(x)

)
ψm+1(x);

(
f ′(x)θ2(x)

f(x)
− πm(x)

ψm(x)

)
ψm(x)

are of a degree less than 1
φm(x) , and, hence, than 1

xm .
Thus, the fraction

ψm(X)πm+1(x)− ψm+1(X)πm(x)
1

x−X [ψm(X)ψm+1(x)− ψm(x)ψm+1(X)]

which has a denominator of which the degree does not exceed m, will give exactly the
terms of the function

(x−X)
f ′(x)θ2(x)

f(x)

to the term of which the degree is the same as the one of the expression

1
1

x−X [ψm(X)ψm+1(x)− ψm(x)ψm+1(X)]
· 1

xm
.

But this function is able to be represented with this exactitude only by the convergent
fractions that give its development into continued fraction, and only by those which
are followed by other convergent fractions of which the denominators have a degree
superior to m. Consequently, our fraction is to the number of these convergent frac-
tions, and as the degree of its denominator not surpass m, it is the last which possesses
a denominator of this kind and that we have designated by φ0(x)

φ0(x)
.

This conclusion permits us to replace, in the formula of the preceding paragraph

F (X) =
θ2(x0)φ0(x0)

φ0(x0)
F (x0) +

θ2(x1)φ0(x1)

φ0(x1)
F (x1) + . . .+

θ2(xn)φ0(xn)

φ0(xn)
F (xn),

the expressions
φ0(X)

φ0(X)
,

φ0(x1)

φ0(X)
, . . .

φ0(xn)

φ0(X)
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by these here respectively
1

x0−X
[ψm(X)ψm+1(x0)−ψm+1(x)ψm(x0)]

ψm(X)πm+1(X)−ψm+1(X)πm(X) ,
1

x1−X
[ψm(X)ψm+1(x1)−ψm+1(x)ψm(x1)]

ψm(X)πm+1(X)−ψm+1(X)πm(X) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

xn−X [ψm(X)ψm+1(xn)−ψm+1(x)ψm(xn)]

ψm(X)πm+1(X)−ψm+1(X)πm(X) ,

But the common denominator of all these expressions is reduced to (−1)m according
to the theory of continued fractions. So that the formula which gives F (X) is brought
back to the form

F (X) = (−1)m
ψm(X)ψm+1(x0)− ψm+1(x)ψm(x0)

x0 −X
θ2(x0)F (x0) +

(−1)m
ψm(X)ψm+1(x1)− ψm+1(x)ψm(x1)

x1 −X
θ2(x1)F (x1) +

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)m
ψm(X)ψm+1(xn)− ψm+1(x)ψm(xn)

xn −X
θ2(xn)F (xn)

One is able to write it under this brief form:

F (X) = (−1)m
i=n∑
i=0

ψm(X)ψm+1(xi)− ψm+1(x)ψm(xi)

xi −X
θ2(xi)F (xi).

Here is therefore a new formula proper to the determination of F (X) by means of
the values of F (x0), F (x1), F (x2),. . .F (xn). It is constructed by aid of the functions
ψm(x), ψm+1(x), which are the denominators of two of the convergent fractions ob-
tained by the development into continued fraction of the expression f ′(x)θ2(x)

f(x) . From
the composition itself of this new form one concludes immediately that it is also an
entire function of X .

§4.

Now we are going to show how the series, of which we have spoken in the Note pre-
sented last year to the Academy, is deduced from this formula; and it will serve us
also to the explanation of some properties of the functions ψ0(x), ψ1(x), ψ2(x). . . ,
determined by the development of f

′(x)θ2(x)
f(x) in continued fraction.

The formula that we just found gives F (X) under the hypothesis of the form

F (x) = a+ bx+ cx2 + . . .+ gxm−1 + hxm.

We will represent this value of F (X) by Ym, and by Ym−1, the value of F (x), which
will be deduced from the hypothesis, where F (X) will be expressed by

F (x) = a+ bx+ cx2 + . . .+ gxm−1.

11



The new formula will furnish the following two values:

Ym = (−1)m
i=n∑
i=0

ψm(X)ψm+1(xi)− ψm+1(X)ψm(xi)

xi −X
θ2(xi)F (xi);

= (−1)m−1
i=n∑
i=0

ψm−1(X)ψm(xi)− ψm(X)ψm−1(xi)

xi −X
θ2(xi)F (xi).

(4)

Taking the difference of these values, one finds

Ym − Ym−1 =

(−1)m
i=n∑
i=0

ψm(X)[ψm+1(xi)− ψm−1(xi)]− ψm(xi)[ψm+1(X)− ψm−1(X)]

xi −X
θ2(xi)F (xi)

The properties of the functions ψm+1(x), ψm(x), ψm−1(x) permit simplifying notably
this difference. These functions are, in fact, the denominators of convergent factors
resulting from the development of the expression f ′(x)θ2(x)

f(x) into a continued fraction.

q0 +
1

q1 +
1

q2 + · · ·
1

qm +
1

qm+1 + · · ·

in which the denominators

q1, q2, . . . qm, qm+1, . . .

must be, by hypothesis, linear functions of the variable x. One has therefore conse-
quently

q1 = A1x+B1,

q2 = A2x+B2,

. . .

. . .

qm+1 = Am+1x+Bm+1,

. . .

Hence, the general rule for the formation of convergent fractions gives

ψm+1(x) = qm+1ψm(x) + ψm−1(x)

= (Am+1x+Bm+1)ψm(x) + ψm−1(x);

and thence
ψm+1(x)− ψm−1(x) = (Am+1x+Bm+1)ψm(x).

12



Changing x into xi and into X , there results from it

ψm+1(xi)− ψm−1(xi) = (Am+1xi +Bm+1)ψm(xi),

ψm+1(X)− ψm−1(X) = (Am+1X +Bm+1)ψm(X).

If one transports these values into that of the difference Ym − Ym−1, one obtains
Taking the difference of these values, one finds

Ym − Ym−1 =

(−1)m
i=n∑
i=0

ψm(X)ψm+1(xi)[Am+1xi +Bm+1]− ψm(xi)ψm(X)[Am+1X +Bm+1]

xi −X
θ2(xi)F (xi)

or, by reducing,

Ym − Ym−1 = (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi)F (xi).

We put into this relation m = 1, 2, 3, . . . , (m− 1), m successively, we will have

Y1 − Y0 = −A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi);

Y2 − Y1 = A3ψ2(X)

i=n∑
i=0

ψ2(xi)θ
2(xi)F (xi);

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

Ym−1 − Ym−2 = (−1)m−1Amψm−1(X)

i=n∑
i=0

ψm−1(xi)θ
2(xi)F (xi);

Ym − Ym−1 = (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi)F (xi);

and the sum of these equations will give

Ym − Y0 = −A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi) +A3ψ2(X)

i=n∑
i=0

ψ2(xi)θ
2(xi)F (xi)

+ . . .+ (−1)m−1Amψm−1(X)

i=n∑
i=0

ψm−1(xi)θ
2(xi)F (xi)

+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm−1(xi)θ
2(xi)F (xi).

13



Ym will have for value

Ym = Y0 −A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi) +A3ψ2(X)

i=n∑
i=0

ψ2(xi)θ
2(xi)F (xi)

· · · · · · · · · · · ·+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm−1(xi)θ
2(xi)F (xi).

In order to determine the quantity Y0, we make m = 0, in formula (4), we find

Y0 =

i=n∑
i=0

ψ0(X)ψ1(xi)− ψ1(X)ψ0(xi)

xi −X
θ2(xi)F (xi)

ψ0(x), ψ1(x) designate the denominators of the first two convergent fractions of the
expression f ′(x)θ2(x)

f(x) , of which the development in continued fraction has received the
forms

q0 +
1

q1 +
1

q2 + · · ·

= q0 +
1

A1x+B1 +
1

A2x+ +B2 + · · ·
There results from it

ψ0(x) = 1, ψ1(x) = A1x+B1;

and the function Y0 becomes

Y0 =

i=n∑
i=0

A1xi +B1−A1X −B1

xi −X
θ2(xi)F (xi)

= A1

i=n∑
i=0

θ2(xi)F (xi),

that one is able to write

Y0 = A1ψ0(X)

i=n∑
i=0

ψ0(xi)θ
2(xi)F (xi),

provided that one is reminded that ψ0(x) = 1.
By means of this value, the preceding expression of Ym, or of the value of F (X)

under the hypothesis

F (x) = a+ bx+ cx2 + . . .+ gxm−1 + hxm,

takes the symmetric form

Ym = A1ψ0(X)

i=n∑
i=0

ψ0(xi)θ
2(xi)F (xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi) + . . .

. . .+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi)F (xi).
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In this expression the functions ψ0(x), ψ1(x), ψ2(x),. . . and the constants A1, A2,
A3. . . are determined by the development of the function f ′(x)θ2(x)

f(x) in a continued frac-
tion of the form

q0 +
1

q1 +
1

q2 +
1

q3 + · · ·
The functions ψ0(x), ψ1(x), ψ2(x),. . . are the denominators of the convergent fractions
that one deduces from this continued fraction; and the constants A1, A2, A3. . . are the
coefficients of x in the denominators q1, q2, q3,. . .

In the particular case for which the law of errors is the same for all the quanti-
ties F (x0), F (x1), . . . one is able, conformably to §1, to take all the values k0, k1,
k2,. . . equal to 1, and hence the function θ(x), determined by the equations

θ(x0) =
1

k0
, θ(x1) =

1

k1
, θ(x2) =

1

k2
, . . .

is itself reduced to unity. The formula found above takes therefore then the form

Ym = A1ψ0(X)

i=n∑
i=0

ψ0(xi)F (xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)F (xi) + . . .

. . .+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)F (xi).

Here ψ0(x), ψ1(x), ψ2(x), . . . , A1, A2, A3,. . . are determined by the continued
fraction that gives the function f ′(x)

f(x) . It is of this series that we have spoken in the Note
already mentioned.2 But at present we ourselves will not be limited to this particular
hypothesis, which reduces the function θ(x) to unity, and we will consider the series
in its general form. We will thus be led to some curious propositions on the functions
ψ0(x), ψ1(x), ψ2(x), . . .

§5.

It is not difficult to see that if the quantities

F (x0), F (x1), F (x2), . . . F (xn)

are determined exactly by the formula

F (x) = a+ bx+ cx2 + . . .+ gxm−1 + hxm,

2The Note of Mr. Chebyshev, with date of 20 October (1 November 1854), contains effectively only
this particular formula. The two pages of this Note are reproduced in its entirety, with the exception of the
corollary that is here:

“In the particular case of x0 = n
n

, x1 = n−2
n

, x2 = n−4
n

, . . . , xn = −n
n

, and of n infinitely great,
this formula furnishes the development of F (x) according to the values of certain functions that Legendre
has designated by Xm (Exerc, part. V, §10) and which are determined by the reduction of the expression
log x+1

x−1
in continued fraction.” [Note of Bienaymé.]
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our series will give the exact expression of this function, whatever is able to be the
function θ(x). This is that which becomes evident, if one notes that the series results
from the formula

F (X) = λ0F (x0) + λ1F (x1) + . . .+ λnF (xn),

and that according to one of the conditions which fix the values of the factors λ0, λ1,
λ2, . . .λn, the following equations must be satisfied:

λ0 +λ1 +λ2 + . . .+λn = 1,

λ0x0 +λ1x1 +λ2x2 + . . .+λnxn = X,

λ0x0x
2+λ1x1x

2+λ2x2x
2+ . . .+λnxnx

2= X2,

. . .

. . .
λ0x

m
0 +λ1x

m
1 +λ2x

m
2 + . . .+λnx

m
n = Xm.

Now, by virtue of these equations, the sum

λ0F (x0) + λ1F (x1) + . . .+ λnF (xn),

when one replaces the quantities F (x0), F (x1), F (x2),. . .F (xn) by their value drawn
from the equation

F (x) = a+ bx+ cx2 + . . .+ gxm−1 + hxm,

is reduced to
a+ bX + cX2 + . . .+ gXm−1 + hXm,

an exact expression of F (X), after the hypothesis itself

F (x) = a+ bx+ cx2 + . . .+ gxm−1 + hxm.

When therefore if the concern is of an entire function F (X), the formula of the
preceding paragraph permits to represent it thus:

F (X) = A1ψ0(X)

i=n∑
i=0

ψ0(xi)θ
2(xi)F (xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi)

+ . . .+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi)F (xi).

If we make
F (x) = ψm(x),

we will find

ψm(X) = A1ψ0(X)

i=n∑
i=0

ψ0(xi)θ
2(xi)ψm(xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)ψm(xi)

+ . . .+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi).
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or else, by setting all the terms under one member alone,

A1ψ0(X)

i=n∑
i=0

ψ0(xi)ψm(xi)θ
2(xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)ψm(xi)θ
2(xi) + . . .

. . .+ ψm(X)[(−1)mAm+1

i=n∑
i=0

ψ2
m(xi)θ

2(xi)− 1] = 0.

But as the functions ψ(x0), ψ(x1), ψ(x2),. . . , are respectively of the degrees 0, 1,
2, 3, . . . , the preceding identity supposes that each of its terms vanish separately. One
has therefore, from all necessity,

(−1)mAm+1

∑i=n
i=0 ψ

2
m(xi)θ

2(xi)− 1 = 0,

Am
∑i=n
i=0 ψm−1(xi)ψm(xi)θ

2(xi) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A2

∑i=n
i=0 ψ1(xi)ψm(xi)θ

2(xi) = 0,

A1

∑i=n
i=0 ψ0(xi)ψm(xi)θ

2(xi) = 0.

The first of these relations gives us

i=n∑
i=0

ψ2
m(xi)θ

2(xi) =
(−1)m

Am+1
;

and, by observing that the coefficients Am, . . .A2, A1 each differ from zero, the other
relations make conclude that

(5)


∑i=n
i=0 ψm−1(xi)ψm(xi)θ

2(xi) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑i=n
i=0 ψ1(xi)ψm(xi)θ

2(xi) = 0,∑i=n
i=0 ψ0(xi)ψm(xi)θ

2(xi) = 0.

It is thence manifest that, form′ different fromm, the sum
∑i=n
i=0 ψm(xi)ψm′(xi)θ

2(xi)

is equal to zero. If on the contrary m′ = m, this sum is equal to (−1)m
Am+1

as one has seen
just now. One has therefore for the coefficient Am+1 the value

Am+1 =
(−1)m∑i=n

i=0 ψ
2
m(xi)θ2(xi)

.

One deduces from it for all the other coefficients A

A1 = 1∑i=n
i=0 ψ

2
0(xi)θ

2(xi)
,

A2 = − 1∑i=n
i=0 ψ

2
1(xi)θ

2(xi)
,

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Am+1 = (−1)m∑i=n
i=0 ψ

2
m(xi)θ2(xi)

.
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If one introduces these values into the formula

F (X) = A1ψ0(X)

i=n∑
i=0

ψ0(xi)θ
2(xi)F (xi)−A2ψ1(X)

i=n∑
i=0

ψ1(xi)θ
2(xi)F (xi)

+ . . .+ (−1)mAm+1ψm(X)

i=n∑
i=0

ψm(xi)θ
2(xi)F (xi),

it takes the form
(6) F (X) =

∑i=n
i=0 ψ0(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
0(xi)θ

2(xi)
ψ0(X) +

∑i=n
i=0 ψ1(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
1(xi)θ

2(xi)
ψ1(X) + . . .

. . .+
∑i=n
i=0 ψm(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
m(xi)θ2(xi)

ψm(X).

The composition of this formula shows that it does not change in value, when one
introduces some arbitrary constant factors into the functions ψ0(x), ψ1(x), ψ2(x), etc.
It will be therefore possible to take in order to determine these functions the develop-
ment of f

′(x)θ(x)
f(x) in a continued fraction of the form

q0 +
L′

q1 +
L′′

q2 + · · ·
whatever are able to be the constants L′, L′′, etc. One knows effectively that the terms
of the convergent fractions deduced from any one expression by the development of
this expression in continued fraction from one of the two forms

q0 +
L′

q1 +
L′′

q2 + · · ·

q0 +
1

q1 +
1

q2 + · · ·
differ only by the constant factors.

In precisely the same manner the equations (5) remain completely exact for the
functions ψ0(x), ψ1(x), ψ2(x), etc., determined by the development of f

′(x)θ2(x)
f(x) into

a continued fraction of the form

q0 +
L′

q1 +
L′′

q2 + · · ·
for they will be not at all altered by the introduction of any constant factors in the
functions ψ0(x), ψ1(x), ψ2(x), etc. Thus by proceeding actually to the applications
of formula (6) and of equations (5), we will not be arrested at all by the supposition
made first in the preceding paragraphs and according to which the numerators L′, L′′,
etc. must be equal to unity in the continued fraction

q0 +
L′

q1 +
L′′

q2 + · · ·
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which serve to construct the functions ψ0(x), ψ1(x), ψ2(x), etc.
By virtue of these equations (5), there exist yet some remarkable relations among

the functions ψ0(x), ψ1(x), ψ2(x), etc. and one arrives without pain by aid of formula
(6), by comparing it for m = n with the formula of interpolation of Lagrange.

For m = n, in fact, formula (6) gives to the expression of a function of the nth

degree, by the values that it receives for some values of the variable x = x0, x1,
x2,. . .xn the form that is here: F (X) =

∑i=n
i=0 ψ0(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
0(xi)θ

2(xi)
ψ0(X) +

∑i=n
i=0 ψ1(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
1(xi)θ

2(xi)
ψ1(X) + . . .

. . .+
∑i=n
i=0 ψn(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
n(xi)θ

2(xi)
ψn(X).

The formula of Lagrange expresses the same function by the form

i=n∑
i=0

(X − x1)(X − x2) . . . (X − xi−1)(X − xi+1) . . .

(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . .
F (xi).

The identity of these two expressions, whatever are able to be the values of F (x0),
F (x1), F (x2), . . . , F (xn), requires that the terms which have these functions for fac-
tors are the same in one another. If therefore one compares the terms which multiply
F (xi) one will have the relation∑i=n

i=0
(X−x1)(X−x2)...(X−xi−1)(X−xi+1)...
(xi−x1)(xi−x2)...(xi−xi−1)(xi−xi+1)...

=

ψ0(xi)θ
2(xi)∑i=n

i=0 ψ
2
0(xi)θ

2(xi)
ψ0(X) + ψ1(xi)θ

2(xi)∑i=n
i=0 ψ

2
1(xi)θ

2(xi)
ψ1(X) + . . . . . .+ ψn(xi)θ

2(xi)∑i=n
i=0 ψ

2
n(xi)θ

2(xi)
ψn(X).

If one makes X = xη , provided that η is not equal to i, one obtains

0 =
ψ0(xi)θ

2(xi)∑i=n
i=0 ψ

2
0(xi)θ2(xi)

ψ0(xη)+
ψ1(xi)θ

2(xi)∑i=n
i=0 ψ

2
1(xi)θ2(xi)

ψ1(xη)+. . . . . .+
ψn(xi)θ

2(xi)∑i=n
i=0 ψ

2
n(xi)θ2(xi)

ψn(xη)

By the introduction of the factor θ(xη)
θ(xi)

one is able to write this expression in the
following manner:

0 =
ψ0(xi)θ(xi)ψ0(xη)θ(xη)∑i=n

i=0 ψ
2
0(xi)θ2(xi)

+
ψ1(xi)θ(xi)ψ1(xη)θ(xη)∑i=n

i=0 ψ
2
1(xi)θ2(xi)

+. . . . . .+
ψn(xi)θ(xi)ψn(xη)θ(xη)∑i=n

i=0 ψ
2
n(xi)θ2(xi)

Making on the contrary X = xi, we will have

1 =
ψ2
0(xi)θ

2(xi)∑i=n
i=0 ψ

2
0(xi)θ(xi)

+
ψ2
1(xi)θ

2(xi)∑i=n
i=0 ψ

2
1(xi)θ2(xi)

+ . . . . . .+
ψ2
n(xi)θ

2(xi)∑i=n
i=0 ψ

2
n(xi)θ2(xi)

.

§6.

These equations, reunited to the equations (5), establish a remarkable propriety with
the functions determined by the formula

ψm(x)θ(x)√∑i=n
i=0 ψ

2
m(xi)θ2(xi)

.
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We designate these functions by Φm(x); the equations constructed just now will
give to us

m=n∑
m=0

Φm(xi)Φm(xη) = 0,

as long as η differs from i, and
m=n∑
m=0

Φm(xi)Φm(xη) = 1,

for η = i.
According to the form of the function Φm(x) and the equations (5), it is easy to

note that
i=n∑
i=0

Φm(xi)Φm′(xi) = 0, or 1,

according as m′ will differ from m or will be equal to m. For the sum of which there
is concern must, by the substitution of the values of Φm(x), Φm′(x),∑i=n

i=0 Φm(xi)Φm′(xi)θ
2(xi)√∑i=n

i=0 ψ
2
m(xi)θ2(xi)

√∑i=n
i=0 ψ

2
m′(xi)θ

2(xi)

Now, according to equations (5), the numerator is annulled if m′ is not equal to m;
and if m′ = m, it must be equal to the denominator, that which reduces the fraction to
unity.

These properties lead to another which the function yet possesses

Φm(x) =
ψm(x)θ(x)√∑i=n
i=0 ψ

2
m(xi)θ2(xi)

,

composed with the functions ψ0(x), ψ1(x), ψ2(x), etc., which serve as denominators
to the convergent fractions deduced from the development of the function f ′(x)θ2(x)

f(x)

into a continued fraction of the form

q0 +
L′

q1 +
L′′

q2 + · · ·

If from all the values of the function Φm(x) obtained by making m = 0, 1, 2, . . . ,
n and x = x0, x1, x2,. . .xn one composes the square

Φ0(x0), Φ0(x1), Φ0(x2), . . . Φ0(xn),

Φ1(x0), Φ1(x1), Φ1(x2), . . . Φ1(xn),

Φ2(x0), Φ2(x1), Φ2(x2), . . . Φ2(xn),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φn(x0), Φn(x1), Φn(x2), . . . Φn(xn),
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the sum of the squares of the terms of any rank, horizontal or vertical, will be equal to
unity; the sum of the products of the corresponding terms of two horizontal or vertical
ranks will be equal to zero.

The construction of squares of this kind makes the subject of a Memoir of Eu-
ler entitled: Problema algebraicum ob affectiones prorsus singulares memorabile (N.
Comm., t. XV).

§7.

Equations (5) demonstrate yet easily a particular property in the functions

ψ1(x), ψ2(x), ψ3(x), . . .

compared to all the functions of same degree and of same coefficient of the highest
power of x: for these functions the sums

i=n∑
i=0

ψ2
1(xi)θ

2(xi),

i=n∑
i=0

ψ2
2(xi)θ

2(xi),

i=n∑
i=0

ψ2
3(xi)θ

2(xi), . . .

have the smallest value possible.
In fact, as the functions ψ0(x), ψ1(x), ψ2(x),. . . , ψm(x) are respectively of degrees

0, 1, 2. . . , m, each entire function V of the degree m is able to be expressed thus:

V = Aψ0(x) +Bψ1(x) + Cψ2(x) + . . .+Hψm(x).

But here it is necessary to take H = 1, since one supposes that the coefficient of
xm is the same in V and in ψm(x). One will have therefore under this hypothesis

V = Aψ0(x) +Bψ1(x) + Cψ2(x) + . . .+ ψm(x).

The concern is to find the values of the coefficients A, B, C, etc., which renders a
minimum the sum

i=n∑
i=0

V 2θ2(xi) =

i=n∑
i=0

[Aψ0(xi) +Bψ1(xi) + Cψ2(xi) + . . .+ ψm(xi)]
2θ2(xi)

The known process of the differential calculus gives us the following equations:

2

i=n∑
i=0

[Aψ0(xi) +Bψ1(xi) + Cψ2(xi) + . . .+ ψm(xi)]ψ0(xi)θ
2(xi) = 0,

2

i=n∑
i=0

[Aψ0(xi) +Bψ1(xi) + Cψ2(xi) + . . .+ ψm(xi)]ψ1(xi)θ
2(xi) = 0,

2

i=n∑
i=0

[Aψ0(xi) +Bψ1(xi) + Cψ2(xi) + . . .+ ψm(xi)]ψ2(xi)θ
2(xi) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Equations (5) reduce them to a single term

2A

i=n∑
i=0

ψ2
0(xi)θ

2(xi) = 0,

2B

i=n∑
i=0

ψ2
1(xi)θ

2(xi) = 0,

2C

i=n∑
i=0

ψ2
2(xi)θ

2(xi) = 0,

. . . . . . . . . . . . . . . . . .

whence one draws
A = 0, B = 0, C = 0, . . .

Thus the conditions of the minimum of the sum
∑i=n
i=0 V

2θ2(xi), when V is of the
form

Aψ0(x) +Bψ1(x) + Cψ2(x) + . . .+ ψm(x),

are
A = 0, B = 0, C = 0, . . .

and, hence,
V = ψm(x).

One demonstrates still without difficulty that if one employs formula (6)∑i=n
i=0 ψ0(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
0(xi)θ2(xi)

ψ0(X) +

∑i=n
i=0 ψ1(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
1(xi)θ2(xi)

ψ1(X) + . . .

. . .+

∑i=n
i=0 ψm(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
m(xi)θ2(xi)

ψm(X)

to determine by approximation any function F (X), one will obtain in order to express
it an entire function of degree m such, that the sum of the squares of the differences
between the values of this entire function and the corresponding values of F (X) for
X = x0, x1, x2, . . . , xn, each multiplied by θ2(x0), θ2(x1), θ2(x2), etc., respectively,
will be a minimum.

We represent effectively the function sought under the form

Aψ0(X) +Bψ1(X) + Cψ2(X) + . . .+Hψm(X)

and we choose the values of the coefficients A, B, C, . . . , H for which the sum

i=n∑
i=0

[F (xi)−Aψ0(xi)−Bψ1(xi)− Cψ2(xi)− . . .−Hψm(xi)]
2θ2(xi)
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will be a minimum. We will find the equations

2

i=n∑
i=0

[F (xi)−Aψ0(xi)−Bψ1(xi)− Cψ2(xi)− . . .−Hψm(xi)]
2ψ0(xi)θ

2(xi) = 0,

2

i=n∑
i=0

[F (xi)−Aψ0(xi)−Bψ1(xi)− Cψ2(xi)− . . .−Hψm(xi)]
2ψ1(xi)θ

2(xi) = 0,

2

i=n∑
i=0

[F (xi)−Aψ0(xi)−Bψ1(xi)− Cψ2(xi)− . . .−Hψm(xi)]
2ψ2(xi)θ

2(xi) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

i=n∑
i=0

[F (xi)−Aψ0(xi)−Bψ1(xi)− Cψ2(xi)− . . .−Hψm(xi)]
2ψm(xi)θ

2(xi) = 0.

By virtue of the relations (5), these equations are reduced to the form

2

i=n∑
i=0

F (xi)ψ0(xi)θ
2(xi)− 2A

i=n∑
i=0

ψ2
0(xi)θ

2(xi) = 0,

2

i=n∑
i=0

F (xi)ψ1(xi)θ
2(xi)− 2B

i=n∑
i=0

ψ2
1(xi)θ

2(xi) = 0,

2

i=n∑
i=0

F (xi)ψ2(xi)θ
2(xi)− 2C

i=n∑
i=0

ψ2
2(xi)θ

2(xi) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

i=n∑
i=0

F (xi)ψm(xi)θ
2(xi)− 2H

i=n∑
i=0

ψ2
m(xi)θ

2(xi) = 0,

whence

A =

∑i=n
i=0 ψ0(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
0(xi)θ2(xi)

,

B =

∑i=n
i=0 ψ1(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
1(xi)θ2(xi)

,

C =

∑i=n
i=0 ψ2(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
2(xi)θ2(xi)

,

. . . . . . . . . . . . . . . . . . . . . . . .

H =

∑i=n
i=0 ψm(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
m(xi)θ2(xi)

.

In reporting these values in the expression

Aψ0(X) +Bψ1(X) + Cψ2(X) + . . .+Hψm(X),
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we find, conformably to that which has been advanced, that the formula sought for
F (X) is precisely∑i=n

i=0 ψ0(xi)θ
2(xi)F (xi)∑i=n

i=0 ψ
2
0(xi)θ2(xi)

ψ0(X) +

∑i=n
i=0 ψ1(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
1(xi)θ2(xi)

ψ1(X)+∑i=n
i=0 ψ2(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
2(xi)θ2(xi)

ψ2(X) + . . .+

∑i=n
i=0 ψm(xi)θ

2(xi)F (xi)∑i=n
i=0 ψ

2
m(xi)θ2(xi)

ψm(X).
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