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In the first discourse under this title it was shown how theedwaination of the
probability of the encounter of a thin cylinder with the sdaf equilateral triangles
tiling the plane leads to the approximate value of the raficicle to the diameter.
We offer now resolution of three new problems related to #maesmethod. The first
task will lead us in the same manner to the determination aresine; the second to
elliptical functions of the 1st and 2nd kind; finally, a thijpdeviously nhamed function,
to introduce the logarithmic function into an expressiomhaf probability.

Letthe circle beAQ BR (diag. 1), and let us assume that at random the thin cylinder
is thrown so that its center does not exit the area of circlbvi@usly, the length of
cylinder is assumed less than the diameter of the circle.dliestion is, how great is
the probability that the cylinder, falling as said, will enmter the circleAQ BR?

For the resolution of this problem it is necessary at eadriiat point of the circle
AQBR, taken as the center of the cylinder, to describe an arc wildias equal to the
half-length of cylinder; this arc in general will cross thecte AQBR at two points;
connecting each of them with the center of cylinder, we wlitaon the known angle
which we indicate b¢. The ratio of the angl2¢ to the entire circl@r will represent
the ratio of the number of cases of encounter to the numbéf pbdssible cases, and it
will consequently be the measure of the probability of emteuby the cylinder with
the circle AQ BR under the assumption that the center of the cylinder faksipely
at that point that we are examining. Then, by the rules ofgirstecalculus, from the
probability which relates to one point or to the element @azaof the circle, we pass
to the probability which corresponds to the total area, aswlas explained in the first
paper.

Let us now turn to the details of the problem solved by us: $efinst decompose
the circleAQ BR into three pieces, signify the two rings: the first by letterand the
second by lettefy, and the inner circle b§2, two concentric circles described with the
centerC of this circle; the radilC £ andC D of these concentric circles we define as
follows: in circle AQ BR, perpendicular to the diametdr3, we contain/ K the length
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Figure 1:

of this cylinder; the intersection of the liné€ and A B determine the point of’, and
consequently the length of a radius@¥. For determining the radius @f D we lay
off on BA, from the pointB, the half-length of the cylinder, i.e., the line &f7; the
extremity of this line determines the poibt With this decomposition of the original
circle, itis easy to se€®, that while the center of the cylinder falls inside cir€lethen
the encounter of the cylinder itself with the circl&) BR is impossible2° when the
center of the cylinder is located inside the ringthen cylinder can meet this circlg;
when the center of cylinder will fall inside the ring then without fail any position of
cylinder would encounter it.

On this basis, let us proceed to determinate the probabilign encounter of the
cylinder with the circumference. Lel = [ K be the length of cylinder; = C'B the
radius of the circleAQ BR; obviously there willbeCD = R — I, CE = vr? — [2.
Let us represent by the desired probability, and by the number of cases of the
encounter of cylinder with the circle when its center will faside the middle ringo;
obviously we will obtain
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since for the circle there will be no cases of encounter; and as far as thewiigy
concerned, the number of encounters will be instead the pupftencounters, conse-
quently this latter is equal to ared? of the ring, multiplied by27. The denominator
27212 represented by the area of this circle, multiplied by théreircumferencér,
i.e., the number of all possible cases in the casting of thiedsr at random, assuming



yet that its center is not to leave the area of this circle.

And so now the problem is to the determination of the valuEor this, let us take,
where it is inside the ring, the area., formed by two adjacent radii'm, Cn and by
two infinitely close concentric arcg; will represent the element of area of this ring.
Let p be the distance of the elemgnfrom the center”, andf the angle olBCm; we
will obtain u = pdpd#. If, for convenience, we transfer the arganto the lineC' B at
P, so thatC P = p, and from the poinP with the radiud, equal of the half-length of
the cylinder, let us describe the arc, that intersects fhitecat the points\/ and V;
the angleM PN will be the one that is in the region that there is an encouiténe
cylinder with the circumference according to the assunmpti@at the center of cylinder
is located atP; let us describe this angle k2. If the elemenpdpd6 is multiplied by
2¢ and then we take integral of the product frém- 0to 0 = 27, andp = CD =r—1
top = CD = /12 — [2, then we will obtain the value of; and thus

2 Vr2—12
n= 2/ / opdodo.
0 r—I

Let us note tha# does not depend af, nor onp; consequently
Nmg
n= 477/ opdp.
r—l

Integrating by parts, we obtain

/cbpdp: pQTQb—%/decb,

and moreover, as with = r — [ there will be¢ = 0, and withp = V2 — 12, ¢ = T,
then we will obtain

Vr2—12 2 2 jus
re—10* 7 1 2
dp = o= 2d
/H opdp 5 5 2/0 p d,

Whence
3

(2) n=(r*—1*)n? - 277/ p2do.

0

But based on the trianglé M P we obtain the equation
r? = p? 4+ 12 + 2lpcos ¢,
from which we deduce

0> = r*—1>—=2lpcos¢

p = —lcos¢+1/r2—12sin? ¢;



Consequently

/2 P2dé = /2(r2—12)d¢+212/2 cos? ¢.d¢—2l/2 \/r? — 12 sin? 6. cos Gdo.
0 0 0 0

However, since
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then we find
2 l
/ 02d¢:(7‘2—ZQ)g—l—lQ-g—l\/r2—lz—r2.arcsin (—)
0 T

Substituting this last value into equation (2), we obtain

n=nm [21\/7‘2 — 12 — 1?7 4 2r2. arcsin (l)] ,

r
and consequently, by equation (1),

w2 + 21v/r?2 — 12 4 272, arcsin (L)
3) z = T,
272

That expression of the probability that the cylinder, casaadom inside the circle,
will fall on the circle is the expression above with the numbeit itself contains an
arcsine, equal to the ratio of the length of the cylinder ®ndlameter of circle, i.e., the
arc of BI.

[522] The second problem, to which we offer here the solyti®as the following:
An arc QBR of indeterminate measure (diag. 2), is described from théec€’, and
able to be contained in a plane, a cylinder is thrown onto littotigh the centeB of
this arc and the center a straight lineB A is prolonged. Poin# can be located on
one or on the other side of centér, let us assume that it lies on the left side, as it
is represented in the drawing. Let us imagine that the cariteylinder runs freely
along the lined B, and the cylinder itself, at the same time, turns freely aiswenter
in the plane of ar€Q BR. The question is, how great is the probability that the two
movements of the said cylinder, independently of one ampsh@pping, will intersect
this arcQ BR?

Let the radius b&’' B = r, half the length of the cylindePM = [, AC = a. If as
in the previous problem, we will contain the cylindek’, perpendicular t@’' B, in arc
QRB, then we determine poir; it is obvious that while the center of the cylinder is
found on the linew B, then with all its positions, it is necessary the cylindecamter
this arc between the poinfsand K.
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Figure 2:

Then, from the poinBB we lay off in the directionB A the half-length of the cylin-
der, and thus determine poifit; an encounter of the cylinder with the arc will be
possible at a point on the segménb; let us represent by the number of cases with
which this encounter will occur. Finally, it is obvious thae cylinder, describing with
its center the lineAB, can not meet the ar@ BR being before what position. And
so, after denoting by the desired probability, and after noting thaB = a + 7,
EB =r —+/r? — 12, we will obtain

n+2r(r—vr2—12

) = 2r(a+ 1)

[523] In order to findn, we take any point on the linB E, for example,P; let us
represent by the variable distance of the poiftfrom A, so thatAP = p; the element
of this line will be dp. From the pointP, with the radius of the semi-cylindér we
intersect this arc at the poinid and V; let ¢ be the angleBPM, and consequently
2¢ the angleM PN; 2¢d¢ will represent the element quantity. Integrating this
expression fromp = AD =a+r —1top = AE = a + v/r? — {2, finds the value of

n. And thus
a+r2—12
n= 2/ ¢ do.

+r—1

[ods=oo- [ o,

But
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and moreover agp = a + r — [ there will be¢ = 0, and whernp = a + V2 — [2,
¢ = 5, then we find

n=m(a+ r2—l2)—2/2pd¢.
0

To exclude the value gf we note that we have in the triangl&V/ P

r2=(p—a)®> +1>+2l(p—a)cos o,

whence
p=a—1lcosp+/r2 —12sin? ¢;
consequently
Jud Jud 12
“odb=a-Z 14 1= sin2p.de.
0 2 0 r?
And thus

Ed 2
n=m(a+ 7’2—12)—aﬂ'—|—2l—2r/2 \/1——231n2¢d¢.
0 7’

[524] Substituting this value into equation (4), we obtain

) 2nr + 2l —w/r2 — 12 = 2r f()% \/1— i—isin2 odo
z = .

2r(a+r)

We see from this expression of the probability that the resbproblem leads us to the

integralfog £/ 1— i—"; sin? ¢dg., which, as is known, relates to elliptical functions of
the 1st and 2nd kinds.



If arc Q BR was a specific value, for example it would equ#tb (diag. 3), and
the cylinder could not fit in it, then in such cases it would leeessary to proceed as
follows: since we assume that a radius of the@#8 divides the ara Bb in half, then
after connecting by a straight line pointsandb, the line ofa Eb will be less than the
length of the cylinder. Consequently, when the center dhdgr is found beyond the
line of EB, then the cylinder, at least its position, will meet the @Rb. If from point
a or b, with a radiusl equal of the half-length of the cylinder, we intersect theli
C B with the arc, then let us determine the palwt and throughout the lin®’e, the
angle at which the regions of which the encounter will ocuiili,be determined by the
straight lines drawn from andb to the center of the cylinder; for example, when the
center of cylinder is located dt’, then the angle about which we speak willda@’b.
Let this anglea P'b = 2¢’. Finally, after laying off from the poinB through the line
BA, the length of the semi-cylindér we define the poinD, and with the center of
the cylinder on the lind) D’ the calculation will remain the same as in the previous
cases. Let be the number of cases in which there is an encounter, wherettter
of the cylinder describes the segménbd’; m is the same, relative to the straight line
D'e; for eB this number is obviously equal to the prodeét x 27.

Moreover, let us puP = p, D'P' = z,@e = h, CB = r, DB = aD’ = |,
AC = a;therewillbeAD =a+7r —1,AD" = a+r2 —h? — /12— h2, Dle =
V12 — h2,eB = r—+/r2 — h2. After denoting, as before, bythe desired probability,
we obtain

~ n4m+2r(r—vr2 —h?
N 2m(a+ 1) '

(6)

From the above, it is easy to see that

Y e B ey
2 / bdo,

+r—1
sqrtl>—h?

m = 2/ ¢ do,
0

or

n o= 20p-2 [ pas

m = 2¢’x—2/x,d¢
observing also that the limits with respectgavill be ¢ = 0 and¢ = arcsin % and in
the reasoning’, ¢’ = arcsin 2 and¢’ = Z.

But it is deduced from the triangl€3)M P andaP’e

r2=(p—a)> +1>+2l(p—a)cos o,
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or

p=a—cosp—+\/r? —[2sin® ¢,

h

VI _p2_ .
v tan ¢’ ’

Consequently

h

h arcsin 7
n = 2(a+v/r2 — h2—/12 — h?) arcsin —,—2/ (a—lcos p+1/r2 — 12 sin? ¢)dg,
v 0
H h
m =V —h2— 2/2 (V2 —n2 )do'.
arcsin%

 tan 104

[526] After assuming for brevity

arcsin ’TI 12
/ 1— —sin® ¢.dp = A,
0 T

h
(7) n=2(v/r2 —h? — /12 — h?) arcsin 7 +2h —2rA.

we obtain

After finding the integrals which determine value we will obtain after the reductions
h h

(8) m = 24/12 — h2. arcsin — — 2hlog (—) .
1 (2

Substituting the last values (7) and (8) into equation (@& ,obtain finally the fol-
lowing expression for the probability.

_ 2h+ 2r(r —v/r2 — 12+ 23/r2 — h2. arcsin% —2rA — 2hlog (%)

© = dm(atr) ’

which turns into (5), when we put = 1.

And so we see the last question to lead us to an expressiondhsists in itself,
besides circular and elliptical functions, also there & lthgarithmiclog (%) Diver-
sifying problems, we obtained another formula with diffgrranscendental numbers;
producing then a great number of trials required by the teants conditions of the
problem, and after computing the number of encounters aftlieder with the perime-
ter of the figure in question, so the number of all tests, Istsletermine the ratio of
these two numbers. The equation is the ratio of the expressimd for the probabil-
ity, we obtain an equation, from which in consequence of altamy of the theorem of
Jakob Bernoulli, it will be possible to derive the approxtmaalue of transcendental
numbers, in the expression of the probability, as it wasarpt in the argument.



