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In the first discourse under this title it was shown how the determination of the
probability of the encounter of a thin cylinder with the sides of equilateral triangles
tiling the plane leads to the approximate value of the ratio of circle to the diameter.
We offer now resolution of three new problems related to the same method. The first
task will lead us in the same manner to the determination by anarcsine; the second to
elliptical functions of the 1st and 2nd kind; finally, a thirdpreviously named function,
to introduce the logarithmic function into an expression ofthe probability.

Let the circle beAQBR (diag. 1), and let us assume that at random the thin cylinder
is thrown so that its center does not exit the area of circle. Obviously, the length of
cylinder is assumed less than the diameter of the circle. Thequestion is, how great is
the probability that the cylinder, falling as said, will encounter the circleAQBR?

For the resolution of this problem it is necessary at each internal point of the circle
AQBR, taken as the center of the cylinder, to describe an arc with aradius equal to the
half-length of cylinder; this arc in general will cross the circle AQBR at two points;
connecting each of them with the center of cylinder, we will obtain the known angle
which we indicate by2φ. The ratio of the angle2φ to the entire circle2π will represent
the ratio of the number of cases of encounter to the number of all possible cases, and it
will consequently be the measure of the probability of encounter by the cylinder with
the circleAQBR under the assumption that the center of the cylinder falls precisely
at that point that we are examining. Then, by the rules of integral calculus, from the
probability which relates to one point or to the element of area of the circle, we pass
to the probability which corresponds to the total area, as that was explained in the first
paper.

Let us now turn to the details of the problem solved by us: let us first decompose
the circleAQBR into three pieces, signify the two rings: the first by letterω, and the
second by letter̃ω, and the inner circle byΩ, two concentric circles described with the
centerC of this circle; the radiiCE andCD of these concentric circles we define as
follows: in circleAQBR, perpendicular to the diameterAB, we containIK the length

∗Paraphrase of the Russian by Richard J. Pulskamp, Department of Mathematics & Computer Science,
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Figure 1:

of this cylinder; the intersection of the linesIK andAB determine the point ofE, and
consequently the length of a radius ofCE. For determining the radius ofCD we lay
off on BA, from the pointB, the half-length of the cylinder, i.e., the line ofEI; the
extremity of this line determines the pointD. With this decomposition of the original
circle, it is easy to see1◦, that while the center of the cylinder falls inside circleΩ, then
the encounter of the cylinder itself with the circleAQBR is impossible;2◦ when the
center of the cylinder is located inside the ringω̃, then cylinder can meet this circle;3◦

when the center of cylinder will fall inside the ringω, then without fail any position of
cylinder would encounter it.

On this basis, let us proceed to determinate the probabilityof an encounter of the
cylinder with the circumference. Let2l = IK be the length of cylinder,r = CB the
radius of the circleAQBR; obviously there will be:CD = R − l, CE =

√
r2 − l2.

Let us represent byz the desired probability, and byn the number of cases of the
encounter of cylinder with the circle when its center will fall inside the middle ring̃ω;
obviously we will obtain

(1) z =
n+ πl2.2π

πr2.2π
=

n+ 2π2l2

2π2r2
,

since for the circleΩ there will be no cases of encounter; and as far as the ringω is
concerned, the number of encounters will be instead the number of encounters, conse-
quently this latter is equal to areaπl2 of the ring, multiplied by2π. The denominator
2π2r2 represented by the area of this circle, multiplied by the entire circumference2π,
i.e., the number of all possible cases in the casting of the cylinder at random, assuming
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yet that its center is not to leave the area of this circle.
And so now the problem is to the determination of the valuen. For this, let us take,

where it is inside the ring̃ω, the areaµ, formed by two adjacent radiiCm, Cn and by
two infinitely close concentric arcs;µ will represent the element of area of this ring.
Let ρ be the distance of the elementµ from the centerC, andθ the angle ofBCm; we
will obtain µ = ρdρdθ. If, for convenience, we transfer the areaµ onto the lineCB at
P , so thatCP = ρ, and from the pointP with the radiusl, equal of the half-length of
the cylinder, let us describe the arc, that intersects this circle at the pointsM andN ;
the angleMPN will be the one that is in the region that there is an encounterof the
cylinder with the circumference according to the assumption that the center of cylinder
is located atP ; let us describe this angle by2φ. If the elementρdρdθ is multiplied by
2φ and then we take integral of the product fromθ = 0 to θ = 2π, andρ = CD = r− l

to ρ = CD =
√
r2 − l2, then we will obtain the value ofn; and thus

n = 2

∫ 2π

0

∫

√
r2−l2

r−l

φρdφdθ.

Let us note thatθ does not depend onφ, nor onρ; consequently

n = 4π

∫

√
r2−l2

r−l

φρdρ.

Integrating by parts, we obtain

∫

φρdρ =
ρ2φ

2
−

1

2

∫

ρ2dφ,

and moreover, as withρ = r − l there will beφ = 0, and withρ =
√
r2 − l2, φ = π

2
,

then we will obtain

∫

√
r2−l2

r−l

φρdρ =
r2 − l2

2
·
π

2
−

1

2

∫ π

2

0

ρ2dφ,

Whence

(2) n = (r2 − l2)π2 − 2π

∫ π

2

0

ρ2dφ.

But based on the triangleCMP we obtain the equation

r2 = ρ2 + l2 + 2lρ cosφ,

from which we deduce

ρ2 = r2 − l2 − 2lρ cosφ

ρ = −l cosφ+

√

r2 − l2 sin2 φ;
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Consequently

∫ π

2

0

ρ2dφ =

∫ π

2

0

(r2 − l2)dφ+2l2
∫ π

2

0

cos2 φ.dφ− 2l

∫ π

2

0

√

r2 − l2 sin2 φ. cosφdφ.

However, since
∫ π

2

0

(r2 − l2)dφ = (r2 − l2)
π

2
,

∫ π

2

0

cos2 φ.dφ =
1

4
π,

∫ π

2

0

√

r2 − l2 sin2 φ. cosφdφ =

√
r2 − l2

2
+

r2

2l
arcsin

(

l

r

)

,

then we find
∫ π

2

0

ρ2dφ = (r2 − l2)
π

2
+ l2 ·

π

2
− l

√

r2 − l2 − r2. arcsin

(

l

r

)

.

Substituting this last value into equation (2), we obtain

n = π

[

2l
√

r2 − l2 − l2π + 2r2. arcsin

(

l

r

)]

,

and consequently, by equation (1),

(3) z =
πl2 + 2l

√
r2 − l2 + 2r2. arcsin

(

l
r

)

2πr2
.

That expression of the probability that the cylinder, cast at random inside the circle,
will fall on the circle is the expression above with the number π, it itself contains an
arcsine, equal to the ratio of the length of the cylinder to the diameter of circle, i.e., the
arc ofBI.

[522] The second problem, to which we offer here the solution, is as the following:
An arcQBR of indeterminate measure (diag. 2), is described from the centerC, and
able to be contained in a plane, a cylinder is thrown onto it. Through the centerB of
this arc and the centerC a straight lineBA is prolonged. PointA can be located on
one or on the other side of centerC; let us assume that it lies on the left side, as it
is represented in the drawing. Let us imagine that the centerof cylinder runs freely
along the lineAB, and the cylinder itself, at the same time, turns freely about its center
in the plane of arcQBR. The question is, how great is the probability that the two
movements of the said cylinder, independently of one another, stopping, will intersect
this arcQBR?

Let the radius beCB = r, half the length of the cylinderPM = l, AC = a. If as
in the previous problem, we will contain the cylinderIK, perpendicular toCB, in arc
QRB, then we determine pointE; it is obvious that while the center of the cylinder is
found on the lineEB, then with all its positions, it is necessary the cylinder encounter
this arc between the pointsI andK.
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Figure 2:

Then, from the pointB we lay off in the directionBA the half-length of the cylin-
der, and thus determine pointD; an encounter of the cylinder with the arc will be
possible at a point on the segmentED; let us represent byn the number of cases with
which this encounter will occur. Finally, it is obvious thatthe cylinder, describing with
its center the lineAB, can not meet the arcQBR being before what position. And
so, after denoting byz the desired probability, and after noting thatAB = a + r,
EB = r −

√
r2 − l2, we will obtain

(4) z =
n+ 2π(r −

√
r2 − l2

2π(a+ r)
.

[523] In order to findn, we take any point on the lineDE, for example,P ; let us
represent byρ the variable distance of the pointP fromA, so thatAP = ρ; the element
of this line will bedρ. From the pointP , with the radius of the semi-cylinderl, we
intersect this arc at the pointsM andN ; let φ be the angleBPM , and consequently
2φ the angleMPN ; 2φdφ will represent the element quantityn. Integrating this
expression fromρ = AD = a+ r − l to ρ = AE = a+

√
r2 − l2, finds the value of

n. And thus

n = 2

∫ a+
√
r2−l2

a+r−l

φdφ.

But
∫

φdφ = φρ−

∫

ρ dφ,
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and moreover asρ = a + r − l there will beφ = 0, and whenρ = a +
√
r2 − l2,

φ = π
2

, then we find

n = π(a+
√

r2 − l2)− 2

∫ π

2

0

ρ dφ.

To exclude the value ofρ we note that we have in the triangleCMP

r2 = (ρ− a)2 + l2 + 2l(ρ− a) cosφ,

whence

ρ = a− l cosφ+

√

r2 − l2 sin2 φ;

consequently

∫ π

2

0

ρ dφ = a ·
π

2
− l + r

∫ π

2

0

√

1−
l2

r2
sin2 φ.dφ.

And thus

n = π(a+
√

r2 − l2)− aπ + 2l − 2r

∫ π

2

0

√

1−
l2

r2
sin2 φdφ.

[524] Substituting this value into equation (4), we obtain

(5) z =
2πr + 2l− π

√
r2 − l2 − 2r

∫ π

2

0

√

1− l2

r2
sin2 φdφ

2π(a+ r)
.

We see from this expression of the probability that the resolved problem leads us to the

integral
∫ π

2

0

√

1− l2

r2
sin2 φdφ., which, as is known, relates to elliptical functions of

the 1st and 2nd kinds.
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If arc QBR was a specific value, for example it would equalaBb (diag. 3), and
the cylinder could not fit in it, then in such cases it would be necessary to proceed as
follows: since we assume that a radius of the arcCB divides the arcaBb in half, then
after connecting by a straight line pointsa andb, the line ofaEb will be less than the
length of the cylinder. Consequently, when the center of cylinder is found beyond the
line ofEB, then the cylinder, at least its position, will meet the arcaBb. If from point
a or b, with a radiusl equal of the half-length of the cylinder, we intersect the line
CB with the arc, then let us determine the pointD′, and throughout the lineD′e, the
angle at which the regions of which the encounter will occur,will be determined by the
straight lines drawn froma andb to the center of the cylinder; for example, when the
center of cylinder is located atP ′, then the angle about which we speak will beaP ′b.
Let this angleaP ′b = 2φ′. Finally, after laying off from the pointB through the line
BA, the length of the semi-cylinderl, we define the pointD, and with the center of
the cylinder on the lineDD′, the calculation will remain the same as in the previous
cases. Letn be the number of cases in which there is an encounter, when thecenter
of the cylinder describes the segmentDD′; m is the same, relative to the straight line
D′e; for eB this number is obviously equal to the producteB × 2π.

Moreover, let us putAP = ρ, D′P ′ = x, ae = h, CB = r, DB = aD′ = l,
AC = a; there will beAD = a + r − l, AD′ = a +

√
r2 − h2 −

√
l2 − h2, D′e =√

l2 − h2, eB = r−
√
r2 − h2. After denoting, as before, byz the desired probability,

we obtain

(6) z =
n+m+ 2π(r −

√
r2 − h2

2π(a+ r)
.

From the above, it is easy to see that

n = 2

∫ a+
√
r2−h2−

√
l2−h2

a+r−l

φdφ,

m = 2

∫ sqrtl2−h2

0

φ′ dφ,

or

n = 2φρ− 2

∫

ρ dφ

m = 2φ′x− 2

∫

x, dφ

observing also that the limits with respect toφ will be φ = 0 andφ = arcsin h
l
, and in

the reasoningφ′, φ′ = arcsin h
i

andφ′ = π
2
.

But it is deduced from the trianglesCMP andaP ′e

r2 = (ρ− a)2 + l2 + 2l(ρ− a) cosφ,

tanφ′ =
h

√
l2 − h2 − x

,
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or

ρ = a− cosφ+

√

r2 − l2 sin2 φ,

x =
√

l2 − h2 −
h

tanφ′
;

Consequently

n = 2(a+
√

r2 − h2−
√

l2 − h2) arcsin
h

i
−2

∫ arcsin h

i

0

(a−l cosφ+

√

r2 − l2 sin2 φ)dφ,

m = π
√

l2 − h2 − 2

∫ π

2

arcsin h

l

(
√

l2 − h2 −
h

tanφ′
)dφ′.

[526] After assuming for brevity

∫ arcsin h

l

0

√

1−
l2

r2
sin2 φ.dφ = ∆,

we obtain

(7) n = 2(
√

r2 − h2 −
√

l2 − h2) arcsin
h

l
+ 2h− 2r∆.

After finding the integrals which determine valuem, we will obtain after the reductions

(8) m = 2
√

l2 − h2. arcsin
h

i
− 2h log

(

h

i

)

.

Substituting the last values (7) and (8) into equation (6), we obtain finally the fol-
lowing expression for the probabilityz:

(9) z =
2h+ 2r(r −

√
r2 − l2 + 2

√
r2 − h2. arcsin h

l
− 2r∆− 2h log

(

h
l

)

2π(a+ r)
,

which turns into (5), when we puth = 1.
And so we see the last question to lead us to an expression thatconsists in itself,

besides circular and elliptical functions, also there is the logarithmiclog
(

h
l

)

. Diver-
sifying problems, we obtained another formula with different transcendental numbers;
producing then a great number of trials required by the termsand conditions of the
problem, and after computing the number of encounters of thecylinder with the perime-
ter of the figure in question, so the number of all tests, lets us determine the ratio of
these two numbers. The equation is the ratio of the expression found for the probabil-
ity, we obtain an equation, from which in consequence of a corollary of the theorem of
Jakob Bernoulli, it will be possible to derive the approximate value of transcendental
numbers, in the expression of the probability, as it was explained in the argument.
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