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Abstract

Statistical modelling is the art of connecting abstract models with sci-
entific or practical questions, so that the models’ probabilities can throw
light on these questions. Standard statistical theory summarizes the re-
sults with p-values. Unfortunately, p-values are widely misunderstood.
Game-theoretic statistics replaces them with e-values, which can be inter-
preted in terms of a game. The model makes a forecast, the statistician
bets against it, and the e-value is the factor by which she multiplies her
stake.

1 Testing by betting

If you put one euro on the table and use it to make a fair bet, what do you
expect to get back? If the bet is all-or-nothing, as when the bet is settled by
tossing a coin, you get back 2 or 0. Other bets may have more than two possible
payoffs. But the concept of expected value provides one way of summarizing your
expectation. The expected value is found by multiplying each amount you might
get back by its probability and adding. Mathematicians say that a bet is fair if
the expected value is equal to the amount you pay — i.e., the amount you put
on the table. So the all-or-nothing bet is fair if the probabilities of 2 and 0 are
both 1/2, so that
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In this case we often say that the coin itself is fair.
Here is a more complicated example. Suppose you bet on how many tosses

of a fair coin will be needed to get the first head. Probability theory tells us that
the probability that the first head will appear on the nth toss is 1/2n. Suppose
your bet requires you to pay one euro and pays back
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euros if the first head appears on the nth toss. This bet is fair because
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It might also have a very surprising outcome. Suppose the first head appears
on the 100th toss. Then (1) tell us that the payback from your investment of
one euro is more, in euros, than 3 followed by 24 zeros. This shows that the bet
is entirely imaginary, because the wealth of the entire world is very, very tiny in
comparison. But not seeing heads on the first 99 tosses gives us strong reason
to think that the probability distribution that assigns probability 1/2n to the
first head appearing on the nth toss is not a good description of the world. It
is not a good forecast of what will happen.

Why would a statistician ever think about the imaginary bet (1)? She would
have good reason to think about it if she thought that the probability of heads
on each trial is 1/10 instead of 1/2. In this case, her probability for seeing n−1
tails followed by a head is (
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and (1) is the ratio of (2) to 1/2n. Statisticians generally agree that such a
ratio, called the likelihood ratio, is a good measure of the forecasting success of
one probability distribution relative to another.

Waiting so long for the first head would also make our statistician (let’s
call her Statistician with a capital S ) question her own probabilities, because
they assign a probability less than 0.000033 to the first 99 tosses being tails.
But a less extreme outcome might confirm Statistician’s opinion. For example,
if the first head appears on the 10th toss, then (1) is approximately 40 and
exactly equal, on a logarithmic scale, to the expected value attributed to (1)
by Statistician’s probability distribution.1 Multiplying your capital by 40 is not
like multiplying it by 3 followed by a hundred thousand zeros. But it is already
astonishingly strong as evidence against the probabilities 1/2n.

2 Test martingales

Instead of imagining a single bet at the outset, Statistician might imagine a
sequence of bets, one on each toss.

1. First she pays 1, getting back 9/5 if the first toss comes out tails and 1/5
if it comes out heads.

2. She stops betting if the toss came out heads. If it came out tails, she
pays the 9/5 she now has to get (9/5)2 if the first toss comes out tails and
(9/5)(1/5) if it comes our heads.

3. And so on. If she has all tails after k tosses, she bets her capital at that
point, (9/5)k, to get back (9/5)k+1 if the (k + 1)st toss comes out tails
and (9/5)k(1/5) if it comes out heads.

1If you have studied probability theory, then you know that Statistician’s probability dis-
tribution is a geometric distribution with expected value 10, and you can verify that the
expected value of the logarithm of (1) under this distribution is equal to the logarithm of its
value when n = 10.
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The net result will be the same as the first bet we studied: Statistician begins
with 1 and ends up with (9/5)n−1(1/5), where n is the number of tosses to get
a head.

This type of nonnegative process, where the results of successive bets are
compounded, is called a test martingale.2 It turns out that any bet on a sequence
of outcomes that begins with unit capital and has a nonnegative payoff can be
obtained by a test martingale.

3 Two ways of testing: e-values and p-values

The result of a bet that has a nonnegative payoff with expected value or less
1 under the hypothesis or hypotheses being tested is called an e-value. As we
have just seen, a test martingale is the result of multiplying successive e-values.3

In order to use e-values (and test martingales) for statistical inference, Statis-
tician must adopt the principle that a large e-value, for a bet chosen in advance,
discredits the hypothesis. It should be kept in mind that this is a principle, not
a theorem. How large is large? This again is a matter of judgement. Some
statisticians have established conventions about how to describe the degree of
discredit associated with different e-values. One convention is that 4 is serious
evidence, 10 is strong evidence, and multiples of 10 are very convincing. The
value of such a convention depends on the context, however. A large e-value can
be taken seriously only if it is based on plausible alternatives that Statistician
has good reason to consider. Otherwise, it can easily be dismissed as a lucky
stab in the dark or even as a likely mistake.4

The evidentiary role of an e-value is analogous to that of a p-value. We used
a p-value in §1, when we observed that Statistician’s own hypothesis assigns a
probability of only about 3 in a hundred thousand to the first head coming only
on the 100th toss or later. Statisticians usually define a p-value by first choosing
a test statistic, or function of the data; a hypothesis’s p-value is its probability
for the test statistic being as large or larger than it actually turned out to be.

Statisticians have used p-values for two hundred years, and they remain more
widely used than e-values by a huge margin. But e-values have several advan-
tages. As we have seen, we can combine evidence from successive observations
by multiplying e-values. The average of two or more e-values, possibly weighted,
is also an e-value, and this provides a way of combining evidence based on dif-
ferent alternatives to the hypothesis being tested. If one of the bets produces

2For centuries, betting strategies in casinos were called martingales. Now mathematicians
use the name for capital processes that result from betting strategies [6].

3Jean Ville studied nonnegative martingales starting with unit capital in the 1930s [10].
Herbert Robbins and his collaborators used composite nonnegative supermartingales in statis-
tics beginning in the 1960s [1]. Vladimir Vovk emphasized the direct interpretation of high
values of a test martingale in the early 1990s [11]. The simpler concept of an e-value emerged
in the late 2010s [2, 3, 12, 14]. The name e-value is due to Vovk and Ruodu Wang [12]. Un-
fortunately, there are several other established uses for the name in various specialized fields
of statistics. An alternative name for our concept of an e-value is betting score [8].

4In addition to testing, there are other applications of e-values. In some applications,
modest e-values are useful [4]. In some others, only very large e-values are considered [13].
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a sufficiently large e-value, its average will also be large. Combining successive
observations or distinct tests is possible for p-values but more awkward. One
way to combine p-values is to convert them into e-values. There are many func-
tions that do this; the simplest may be 1/

√
p− 1. It converts the p-value 0.05,

conventionally considered serious evidence, to the e-value 3.47.
When we simultaneously test more than one hypothesis about the same

outcomes, we say that we are testing a composite hypothesis. An e-value for a
composite hypothesis is a payoff that has expected value 1 or less under each
of the hypotheses. A p-value is the maximum or supremum of the different
hypotheses’ p-values using the same test statistics.

4 Free play and a fundamental principle

If Statistician was testing the fairness of her coin using the martingale we de-
scribed in §2, then she saw this sequence of cumulative e-values:
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But after the fourth toss, she already had an e-value of ( 95 )

4, which is greater
than 10. At that point, she might have felt that this was all the evidence
against the coin’s fairness that she needed. So she might have stopped. Is this
legitimate? Statisticians agree that it is, but her right to stop and count ( 95 )

4

as evidence is again a principle, not a theorem. It has been called the principle
of optional stopping.

Here is a more general principle that is equally reasonable.

Fundamental principle for testing by betting. Successive bets
against a forecaster that begin with unit capital and never risk more
discredit the forecaster to the extent that the final capital is large.

This principle not only allows Statistician to stop when she wants, it also allows
her to begin testing with no plan for when to stop or how to bet on later rounds
if she does not stop. It even allows her to change the experiment that produces
the outcomes she is betting on. In short, it allows free continuation.

5 Statistician’s logarithmic utility

Human reactions to many stimuli are logarithmic. This also seems true of e-
values. The difference between the two e-values 5 and 25 seems important, while
the difference between 105 and 125 seems negligible. If Statistician has her own
probabilities, we can formalize this intuition by assuming that she also has a
logarithmic utility function, in the sense that she chooses how to bet so as to
maximize her expected value of the logarithm of her e-value.5

5The assumption that a decision maker maximizes subjective expected utility is widely
made in decision theory and economics.
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A bit of notation may help here. Statistician is betting against a probability
distribution P for some outcome Y . She has her own probability distribution Q
for Y . Her bet will be a nonnegative function S of Y that is assigned expected
value 1 or less by P ; we can write this condition as EP (S(Y )) ≤ 1. Maximizing
her expected utility means choosing S to maximize EQ(ln(S(Y ))). This was
advocated by John L. Kelly, Jr., in 1956 [5], and we call it Kelly betting.

This maximization problem is not mathematically difficult; the maximum
is achieved when S is the likelihood ratio: S = Q(Y )/P (Y ).6 So maximizing
expected logarithmic payoff is consistent with the e-value (1) in the problem
where a statistician has the probabilities (2) for when the first head will appear.

An important advantage of maximizing the expected value of the logarithm
of the payoff follows directly from the fact that Statistician is multiplying e-
values. This means adding their logarithms. By maximizing the logarithm on
each round, she does all she can on that round towards maximizing the sum
of the logarithms. If she chose her bet on a particular round to maximize the
expected value of the payoff rather than its logarithm, she might lose all her
capital. And then she would not be able to bet on the next round.

6 Statistical modelling

E-values can be used to test forecasters who give probabilities for outcomes that
we will observe. They can also be used to make inferences about facts that we
will never observe and questions that we do not expect to settle with certainty
and precision. What is the mass of Jupiter? Does a particular medical treat-
ment do any good? To address such a question with e-values, Statistician must
make an argument for connecting a probability distribution with the question.
Statistical modelling is the art of making such arguments.

One classical example of statistical modelling is the theory of errors devel-
oped by Laplace and Gauss. Suppose Statistician thinks that a normal proba-
bility distribution with mean zero and variance one (the familiar “bell-shaped
curve” of statistics) has described past errors of her measuring instrument rea-
sonably well. She argues that this is reason enough to adopt it as her forecast
of the error it will make measuring a quantity µ. This is not really a forecast, as
she will not observe this error. But she can imagine someone (let’s call him Fore-
caster) who knows µ and therefore can make the forecast and observe the error,
and someone else (let’s call him Skeptic) who also knows µ and bets against the
forecast. Although Statistician does not see this imaginary betting, she sees the
measurement and so can calculate how well Skeptic did as a function of µ. As
she thinks the normal distribution is a good forecast, she expects that Skeptic
will not multiply his capital by a lot, and this will give her guidance about the
value of µ.

The division of labor between Forecaster and Skeptic allows us to understand
more clearly some of the more complicated arguments statisticians make. In the

6For a simple proof, see [8]. For extensions to composite hypotheses, where the maximiza-
tion can be difficult, see [7].
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case of randomized medical experiments, for example, Forecaster can rely on the
probabilities involved in the random assignment of treatments, while Skeptic can
use Statistician’s more subjective beliefs about how different treatments might
work with particular patients.

7 Game-theoretic probability

As a branch of mathematics, game theory studies strategies in fully defined
games — games for which the mathematician specifies the players’ goals and
the extent to which they see other players’ moves. In real games, players might
also have private information and might acquire more private information as
play proceeds, but in the mathematical theory a player’s strategy can use only
the previous moves in the game that the player sees.

We leave the realm of pure mathematics when we allow Forecaster and Skep-
tic (or Statistician, who is pulling their strings) to play freely instead of following
a strategy specified at the outset of play. We also sometimes find it useful to
introduce other players who can play freely, including Nature, who announces
things unknown to Statistician, like µ in our example, and Experimenter, who
may change the experiment for the next round of play or announce auxiliary
information, as in regression or classification problems.

It is also interesting and useful, however, to re-enter the realm of mathe-
matics by studying strategies for Forecaster and Skeptic. This is game-theoretic
probability.7 To fully define the game, we need a player who announces out-
comes; we call this player Reality. We can then ask whether Skeptic has a
winning strategy for a particular goal.

Consider, for example, this game between Forecaster, Skeptic, and Reality,
which continues for 1,000 rounds. Skeptic begins with 1 euro. Forecaster begins
each round by announcing a probability for “heads”, then Skeptic bets against
the forecast, and then Reality says “heads” or “tails”. Skeptic must bet in such
a way that his current capital (his initial unit capital plus any winnings minus
any losses) never becomes negative, no matter what Reality does. Write p for
the average of Forecaster’s 1,000 probabilities, K for Skeptic’s capital at the end
of play, and #heads for number of times Reality says “heads”. And set Skeptic
this goal:

Either

∣∣∣∣#heads

1,000
− p

∣∣∣∣ < 0.1 or else K ≥ 10. (3)

Skeptic has a winning strategy in this game. In other words, Skeptic can guar-
antee (3) no matter what Forecaster and Reality do.

This is one game-theoretic instance of the many-faceted law of large numbers.
It illustrates how discrete-time probability theory can be translated into game
theory and then generalized. It generalizes Chebyshev’s version of the law of
large numbers to the case where Forecaster is a free player.

7The most thorough study of game-theoretic probability is [9]. Some examples of game-
theoretic statistical modelling are provided in Chapter 10.
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The game-theoretic law of large numbers supports an argument made by
Kelly in 1956 for Skeptic using logarithmic utility. Laws of large numbers,
game-theoretic or not, are available only when we are adding. Because the
logarithms and their expected values add, reasonable conditions on Skeptic’s
probabilities will allow him to use a game-theoretic law of large numbers to
attribute a high probability to his capital growing, even though Forecaster is a
free player. This does not work if he tries to maximize his expected value for
his final capital or other functions of it.

8 How to discourage real gambling

Probability theory began as a theory of gambling in games of pure chance.
When Jacob Bernoulli, who proved the first law of large numbers, undertook
to apply the theory to civil, criminal, and business affairs, he minimized the
connection with gambling. Most statisticians have followed his example. We
want statistical inference to live in the realm of reason, not in the casino.

None of the mathematical statisticians who have been developing game-
theoretic statistics seek to promote gambling. Some even advocate its legal
prohibition. But the value of game-theoretic statistics lies in the insights that
can be gained by making the betting game between Forecaster and Skeptic ex-
plicit, and this makes hiding the connection with gambling impossible. Perhaps
we can instead use what we can learn from studying martingales to educate the
public about the perils of gambling.

No one has ever bankrupted their family and destroyed their lives by trying
to multiply an investment of one euro without risking more. Yet our theory
shows that this is the legitimate way to show that you know better than the
posted odds, in a casino, at a horse race, or in a financial market. People
destroy their lives when, consciously or unconsciously, they play martingales
that can become negative, and deeply negative. It has become easier and easier
to play such martingales, whether by impulsively making another online sports
bet or by speculating in financial securities on margin. It should be the duty
of teachers of probability and statistics to teach not only how the law of large
numbers works but also how slowly it works, and how easily gamblers and day
traders can delude themselves.
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